Grantee Research Project Results
2010 Progress Report: Human Clinical Studies of Concentrated Ambient Ultrafine and Fine Particles
EPA Grant Number: R832415C003Subproject: this is subproject number 003 , established and managed by the Center Director under grant R832415
(EPA does not fund or establish subprojects; EPA awards and manages the overall grant for this center).
Center: Rochester PM Center
Center Director: Oberdörster, Günter
Title: Human Clinical Studies of Concentrated Ambient Ultrafine and Fine Particles
Investigators: Frampton, Mark W. , Zareba, Wojciech , Utell, Mark J. , Oakes, David , Phipps, Richard , Gelein, Robert
Current Investigators: Frampton, Mark W. , Utell, Mark J. , Zareba, Wojciech , Phipps, Richard , Gelein, Robert , Oakes, David
Institution: University of Rochester
EPA Project Officer: Chung, Serena
Project Period: October 1, 2005 through September 30, 2010 (Extended to September 30, 2012)
Project Period Covered by this Report: June 30, 2009 through July 1,2010
RFA: Particulate Matter Research Centers (2004) RFA Text | Recipients Lists
Research Category: Human Health , Air
Objective:
The overall objective of our current and planned studies is to determine the pulmonary and cardiovascular effects of exposure to ultrafine and fine particulate matter (PM). The clinical studies in healthy humans and susceptible individuals proposed in this research core focus on the effects of ambient ultrafine and fine particles on three major determinants of adverse cardiac events: 1) blood coagulation induced by effects on platelets and circulating microparticles; 2) cardiac output; and 3) cardiac rhythm and repolarization.
Our overall hypothesis is that inhalation of ambient PM causes small but measurable changes in coagulation and cardiovascular function that help explain the cardiovascular effects of PM exposure. We further hypothesize that the cardiovascular effects are determined by the ability of PM to generate reactive oxygen and nitrogen species, and are more pronounced in subjects with type 2 diabetes and in subjects with genetically determined reduced antioxidant defenses. Inhaled ultrafine particles increase the burden of reactive oxygen species to the endothelium. Endothelial activation and vasoconstriction increase platelet adherence and release of thromboxane, activate and prolong the transit time of blood leukocytes, and deplete vascular nitric oxide (NO). Particles may also have direct effects on platelets and leukocytes. Vascular injury triggers release of procoagulant microparticles into the blood, and initiation of coagulation. In collaboration with the Vascular and Inflammation Facility Core, we measure the effects of inhaled ambient fine PM on platelet number, phenotype, and function, and quantitate intravascular microparticles derived from platelets and endothelial cells. In collaboration with the Cardiac Core, we use noninvasive monitoring methods to measure exposure effects on cardiac output, rhythm, and repolarization.
Progress Summary:
- Human clinical exposures to concentrated ambient ultrafine particles
Data analyses have been completed for this study, and manuscript preparation is underway. Design details and findings of this study were presented in our previous progress report.
- Ultrafine Particle Effects on Dendritic Cells in Asthma (ASTHMACON)
We have completed a pilot study that was funded in part by the Rochester EPA Center. This study examines the effects of air pollution exposure on innate immunity in susceptible subjects. We hypothesized that, in susceptible asthmatic subjects, inhalation of concentrated ambient UFP will: 1) stimulate the recruitment and maturation of blood-derived dendriticcells (DC), 2) increase DC responses to challenge with bacterial products or PM, and 3) enhance the ability of DC to drive a Th2-type immune response. Furthermore, we hypothesized that these effects are most pronounced in those with genetic polymorphisms that reduce anti-oxidant defenses, specifically people who have the null variant of the glutathione Stransferase M1 (GSTM1) gene.
Our goal in this pilot study was to recruit and study 10 patients with asthma, 5 of whom were GSTM1 sufficient and 5 who were GSTM1 null. Subjects were exposed to concentrated ambient ultrafine particles on one occasion, and clean, filtered air on another occasion, at rest. Exposures were separated by at least 3 weeks. At baseline and 3 and 24 hours after exposure, blood was obtained, spirometry was performed, and exhaled breath compensate was collected. Blood was subjected to a detailed flow cytometric characterization of circulating dendritic cells and monocytes. In addition, blood monocytes were cultured in vitro and stimulated to develop DC phenotypes. These blood derived dendritic cells were then challenged in vitro.
The preliminary findings from this study were presented at the AAAR meeting and the American Thoracic Society International Conference, both in 2010. Our findings demonstrate the feasibility of studying circulation DC populations in human subjects with specific genetic polymorphisms, and indicate that UFP exposure may cause subtle alterations in some subsets of monocytes, eosinophils, and circulating DCs. There were no effects on symptoms or lung function.
- Cardiovascular Effects of Ultrafine Particles in Genetically Susceptible Subjects (CUSP)
Our human clinical studies of UFP inhalation have shown evidence for acute effects on vascular function. We hypothesize that the acute vascular effects of UFP exposure are a consequence of reduced NO bioavailability. We have developed a new approach to test this hypothesis, involving the measurement of nitric oxide metabolites in both arterial and venous blood. Specifically, we hypothesize that exposure to ultrafine particles will deliver a burden of reactive oxygen species to the pulmonary vascular endothelium, altering the delivery of NO, specifically as nitrite, to the systemic vasculature. We expect that UFP exposure will alter the artery-to-vein nitrite gradient which is normally present.
We have now initiated a new study, jointly funded by this center and by the NIH, to test this hypothesis in healthy subjects. Two groups of subjects will be selected for specific genetic polymorphisms expected to increase susceptibility to oxidative stress, and these two groups will be compared with a third group that is "wild type" for each of these polymorphisms.
For the EPA-funded part of this study, we are going to add a new, separate set of analyses that was not part of the NIH application, but is highly relevant to the whole issue of PM effects on vascular function and NO bioavailability. We will be doing a set of analyses to detect subtle effects on the membrane of circulating red blood cells. Our hypothesis is that inhaled UFP or their products cause subtle alterations in the RBC membrane that shift the dynamics of RBC transport and storage of nitrite and other NO metabolites. This study is now under way. We have recruited 15 subjects to the study, and six subjects have completed both air and UFP exposures.
These studies will provide important new information about the cardiac and vascular effects of exposure to UFP, and will test specific mechanisms for these effects. In addition, we will test the hypothesis that specific genetic polymorphisms confer increased susceptibility to UFP effects.
These studies are highly relevant to the overall Center goal of understanding the cardiovascular effects of UFP exposure.
Findings from these studies will improve our understanding of the health effects of breeding ambient UFP, and will help to inform the development of rational ambient air quality standards.
Sub-Project Title: “Ultrafine Particles and Cardiac Responses: Evaluation in a Cardiac Rehabilitation Center”
Investigators: Mark J. Utell (PI); Philip Hopke and William Beckett (Co-PIs)
Co-Investigators: David Oakes; Wojciech Zareba; Mark Frampton; John Bisognano; Annette Peters
Objective(s) of the Research Project:
University of Rochester investigators in Rochester, New York have conducted a study evaluating the association between air pollution (with particular emphasis on ultrafine particles) and several cardiovascular parameters. The study population consisted of 75 subjects undergoing cardiac rehabilitation after recent acute coronary syndrome (myocardial infarction, unstable angina). The enrolled subjects were involved in two rehabilitation sessions per week consisting of 20-45 minutes of exercise over a 10-week period. Cardiovascular status, blood pressure, and continuous Holter ECG recordings were applied during each session. The ECG recordings included resting supine periods prior to supervised exercise and after exercise (recovery period) as well as during the exercise period. In addition, venous blood samples were collected weekly for fibrinogen, C-reactive protein and complete blood counts. Measurements of ambient ultrafine particles were monitored continuously within and outside of the cardiac rehabilitation center. The particle size distribution data from the Cardiac Rehabilitation Center (indoors and outdoors) and at the NYS DEC site were collected to support the clinical studies of heart rate, rhythm and ischemia in the rehabilitation patients.
Progress Summary/Accomplishments:
A. Subject Demographics: 76 subjects were enrolled in the protocol. Five patients discontinued participation in the study for different reasons: one due to job location change; one for orthopedic complications (2 males non-completers); and three due to poor attendance (3 females). Of the 71 participants (49 male, 22 female; mean age = 60 years and range = 36 to 80 years), 95% completed the entire protocol.
Inclusion criteria required participants to have stable coronary artery disease, be enrolled in the University of Rochester Medical Center rehabilitation program, and live within 10 miles of the central monitoring site or the cardiac rehab center. Participants were current non-smokers and remained in the study area during the entire study period. Patients with atrial fibrillation, pacemakers, bundle-branch blocks, and type 1 diabetes were excluded. Annual approval for the protocol was obtained from the University of Rochester Research Subjects Review Board (RSRB).
B. Particle Measurements: Ultrafine particle exposures within and without the cardiac rehab center were monitored continuously. The particle size distribution data (Table 1) from the Cardiac Rehabilitation Center (indoors and outdoors) and at the NYS DEC site have been collected to support the clinical studies of heart rate variability and inflammatory markers in the blood of rehabilitation patients. In addition, 30 patients completed 48 hour home monitoring (2 day averages = 9.2 x 103 +/- 6.8 x 103 p/cm3), with 16 patients performing particle count monitoring in their car to and from the rehab facility (1.5 x 104 +/- 8.2 x 103 p/cm3) using a portable nuclei counter (TSI model 3781).
Table 1. Hourly ultrafine particle count concentrations (x103 p/cm3) (Sept. 06 – Sept. 09).
|
Sept.-Dec. 2006 |
10-50 nm |
50-100 nm |
100-500 nm |
10-500 nm |
% Rpted. |
|
Rehab Indoor |
0.48 +/- 0.41 |
0.41 +/- 0.32 |
0.39 +/- 0.31 |
1.29 0.85 |
98.4 |
|
Rehab Outdoor |
2.71 +/- 2.03 |
1.55 +/- 1.18 |
1.06 +/- 0.78 |
5.32 3.35 |
98.4 |
|
DEC Outdoor |
3.24 +/- 2.48 |
1.64 +/- 1.41 |
1.09 +/- 0.86 |
5.97 4.05 |
78.0 |
|
2007 |
10-50 nm |
50-100 nm |
100-500 nm |
10-500 nm |
% Rpted. |
|
Rehab Indoor |
0.85 +/- 1.7 |
0.61 +/- 0.61 |
0.53 +/- 0.50 |
1.98 2.25 |
88.3 |
|
Rehab Outdoor |
2.94 +/- 3.51 |
1.49 +/- 1.57 |
1.01 +/- 0.80 |
5.44 4.87 |
88.3 |
|
DEC Outdoor |
4.00 +/- 3.64 |
1.87 +/- 1.44 |
1.14 +/- 0.88 |
7.01 4.84 |
96.8 |
|
2008 |
10-50 nm |
50-100 nm |
100-500 nm |
10-500 nm |
% Rpted. |
|
Rehab Indoor |
0.96 +/- 2.0 |
0.65 +/- 0.72 |
0.72 +/- 0.72 |
2.29 2.76 |
70.7 |
|
Rehab Outdoor |
2.89 +/- 3.48 |
1.35 +/- 1.12 |
1.30 +/- 1.15 |
5.55 4.63 |
70.7 |
|
DEC Outdoor |
3.20 +/- 2.76 |
1.48 +/- 1.14 |
0.95 +/- 0.72 |
5.64 3.79 |
95.8 |
|
Jan.-Sept. 2009 |
10-50 nm |
50-100 nm |
100-500 nm |
10-500 nm |
% Rpted. |
|
Rehab Indoor |
0.70 2.0 |
0.45 +/- 0.54 |
0.36 +/- 0.39 |
1.51 2.94 |
92.9 |
|
Rehab Outdoor |
2.38 2.93 |
1.09 +/- 0.94 |
0.76 +/- 0.59 |
4.23 3.64 |
92.9 |
|
DEC Outdoor |
3.23 2.97 |
1.43 +/- 1.08 |
1.0 +/- 0.87 |
5.70 4.01 |
96.6 |
We are examining the relationship between the ambient ultrafine particle size distributions at the Rehabilitation Facility and the measurements at the NYSDEC site during a one-year period. The data have been collected and the analyses are underway. The goal is to examine the differences in ultrafine particle counts in 2 areas that are closely located.
C. Cardiac Rehabilitation and Routine Parameters:
During each cardiac rehabilitation session, each subject had measured heart rate and blood pressure before exercise, at peak exercise, and after exercise. Apart from presenting these measures, differences between peak exercise and pre-exercise and between peak and postexercise were also reported.
ECG Recordings: The ECG recordings for this study were acquired and analyzed using a 3-lead (V2, V5, aVF) Vision Premier Burdick Holter System (Cardiac Science, Bothell, WA) and custom-made programs at the University of Rochester Medical Center. As part of a 2-3-hour 3-lead Holter recording, but prior to each exercise session, a 10-minute resting ECG was acquired to obtain baseline (pre-exercise) information regarding several ECG parameters without influence of exercise. After completion of the resting 10-min recording, subjects were undergoing the routine exercise rehabilitation program with continuous holter recording. Subsequently a 10-minute resting recording prior to discharge was repeated.
ECG Parameters: The entire duration of Holter ECG recording served to obtain the following ECG parameters:
- mean NN interval mean RR interval based on normal-to-normal beats while excluding nonsinus beats
- SDNN – standard deviation of normal-to-normal intervals representing measures of overall heart rate variability
- rMSSD – root mean square of successive differences
- TS – heart rate turbulence slope, heart arte derived parameter reflecting baroreflex sensitivity
- DC – deceleration capacity – measure of heart rate dynamics
- ST depression ≥1mm for at least 1 minute – reflecting myocardial ischemia in any of three leads
- Number of VPBs – number of ventricular premature beats in entire recording
- Number of APBs – number of atrial premature beats in entire recording
In addition, resting 10-minute resting recordings were used to evaluate:
- mean NN interval,
- SDNN,
- rMSSD,
- HF – high-frequency component from frequency-domain HRV analysis reflecting parasympathetic modulation of the heart,
- QTc duration, reflecting overall duration of ventricular repolarization
- Tp-Te (Tpeak – T-end) duration, late repolarization duration that might reflect heterogeneity of repolarization.
D. Approaches to the Statistical Analyses:
- General Strategy: A key strength of this study is the availability of longitudinal measurements on each subject, corresponding to their successive visits to the rehabil
Future Activities:
- UPCON study (healthy subjects inhaling CUFP): complete measurements of soluble markers of inflammation and coagulation; prepare manuscripts.
- UPASTHMA study (genetically susceptible asthmatic subjects inhaling CUFP): complete data analysis, prepare manuscript.
- CUSP study (Cardiovascular Effects of Ultrafine Particles in Genetically Susceptible Subjects): Complete subject recruitment and exposures.
- Data analyses are ongoing and a manuscript describing the cardiac findings is planned.
Journal Articles on this Report : 5 Displayed | Download in RIS FormatPublications Views Other subproject views: All 57 publications 44 publications in selected types All 41 journal articles Other center views: All 191 publications 157 publications in selected types All 144 journal articles Publications Type Citation Sub Project Document Sources Journal Article Hildebrandt K, Ruckerl R, Koenig W, Schneider A, Pitz M, Heinrich J, Marder V, Frampton M, Oberdorster G, Wichmann HE, Peters A. Short-term effects of air pollution: a panel study of blood markers in patients with chronic pulmonary disease. Particle and Fibre Toxicology 2009;6:25. R832415 (2009)
R832415 (2010)
R832415 (2011)
R832415 (Final)
R832415C002 (2009)
R832415C002 (2010)
R832415C002 (2011)
R832415C003 (2010)
R832415C003 (2011)
R832415C004 (2010)
R832415C004 (2011)
- Full-text from PubMed
- Abstract from PubMed
- Associated PubMed link
- Full-text: BioMed Central-Full Text HTML
Exit- Abstract: BioMed Central-Abstract
Exit- Other: BioMed Central-Full Text PDF
ExitJournal Article Shah AP, Pietropaoli AP, Frasier LM, Speers DM, Chalupa DC, Delehanty JM, Huang L-S, Utell MJ, Frampton MW. Effect of inhaled carbon ultrafine particles on reactive hyperemia in healthy human subjects. Environmental Health Perspectives 2008;116(3):375-380. R832415 (2007)
R832415 (2008)
R832415 (2010)
R832415 (2011)
R832415 (Final)
R832415C003 (2006)
R832415C003 (2010)
R832415C003 (2011)
- Full-text from PubMed
- Abstract from PubMed
- Associated PubMed link
Journal Article Stewart JC, Villasmil ML, Frampton MW. Changes in fluorescence intensity of selected leukocyte surface markers following fixation. Cytometry Part A 2007;71A(6):379-385. R832415 (2007)
R832415 (2008)
R832415 (2010)
R832415 (2011)
R832415 (Final)
R832415C003 (2006)
R832415C003 (2010)
R832415C003 (2011)
- Abstract from PubMed
- Full-text: Wiley Online-Full Text HTML
Exit- Abstract: Wiley Online-Abstract
Exit- Other: Wiley Online-Full Text PDF
ExitJournal Article Thurston GD, Bekkedal MY, Roberts EM, Ito K, Pope III CA, Glenn BS, Ozkaynak H, Utell MJ. Use of health information in air pollution health research:past successes and emerging needs. Journal of Exposure Science and Environmental Epidemiology 2009;19(1):45-58. R832415 (2010)
R832415 (2011)
R832415 (Final)
R832415C003 (2010)
R832415C003 (2011)
- Abstract from PubMed
- Full-text: Nature Publishing-Full Text PDF
Exit- Abstract: Nature Publishing-Abstract
ExitJournal Article Zareba W, Couderc JP, Oberdorster G, Chalupa D, Cox C, Huang L-S, Peters A, Utell MJ, Frampton MW. ECG parameters and exposure to carbon ultrafine particles in young healthy subjects. Inhalation Toxicology 2009;21(3):223-233. R832415 (2008)
R832415 (2009)
R832415 (2010)
R832415 (2011)
R832415 (Final)
R832415C002 (2010)
R832415C002 (2011)
R832415C003 (2010)
R832415C003 (2011)
R832415C004 (2009)
R832415C004 (2010)
R832415C004 (2011)
R827354 (Final)
- Full-text from PubMed
- Abstract from PubMed
- Associated PubMed link
- Abstract: Taylor and Francis-Abstract
ExitSupplemental Keywords:
Health, RFA, Scientific Discipline, Air, PHYSICAL ASPECTS, Health Risk Assessment, Physical Processes, Risk Assessments, particulate matter, human exposure, long term exposure, aersol particles, atmospheric particles, ambient particle health effects, exposure, atmospheric aerosol particles, PM, ultrafine particulate matter, atmospheric particulate matter, acute cardiovascular effects, cardiovascular disease, human health riskProgress and Final Reports:
Original Abstract
- 2006 Progress Report
- 2007 Progress Report
- 2008 Progress Report
- 2009 Progress Report
- 2011 Progress Report
- Final Report
Main Center Abstract and Reports:
R832415 Rochester PM Center Subprojects under this Center: (EPA does not fund or establish subprojects; EPA awards and manages the overall grant for this center).
R832415C001 Characterization and Source Apportionment
R832415C002 Epidemiological Studies on Extra Pulmonary Effects of Fresh and Aged Urban Aerosols from Different Sources
R832415C003 Human Clinical Studies of Concentrated Ambient Ultrafine and Fine Particles
R832415C004 Animal models: Cardiovascular Disease, CNS Injury and Ultrafine Particle Biokinetics
R832415C005 Ultrafine Particle Cell Interactions In Vitro: Molecular Mechanisms Leading To Altered Gene Expression in Relation to Particle Composition
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Conclusions drawn by the principal investigators have not been reviewed by the Agency.
Project Research Results
- Final Report
- 2011 Progress Report
- 2009 Progress Report
- 2008 Progress Report
- 2007 Progress Report
- 2006 Progress Report
- Original Abstract
41 journal articles for this subproject
Main Center: R832415
191 publications for this center
144 journal articles for this center