Grantee Research Project Results
2000 Progress Report: Assessing Human Exposures to Particulate and Gaseous Air Pollutants
EPA Grant Number: R827353C001Subproject: this is subproject number 001 , established and managed by the Center Director under grant R827353
(EPA does not fund or establish subprojects; EPA awards and manages the overall grant for this center).
Center: Health Effects Institute (2015 - 2020)
Center Director: Greenbaum, Daniel S.
Title: Assessing Human Exposures to Particulate and Gaseous Air Pollutants
Investigators: Koutrakis, Petros
Current Investigators: Koutrakis, Petros , Suh, Helen H. , Brown, Kathleen Ward , Sarnat, Jeremy
Institution: Harvard University
EPA Project Officer: Chung, Serena
Project Period: June 1, 1999 through May 31, 2005 (Extended to May 31, 2006)
Project Period Covered by this Report: June 1, 2000 through May 31, 2001
Project Amount: Refer to main center abstract for funding details.
RFA: Airborne Particulate Matter (PM) Centers (1999) RFA Text | Recipients Lists
Research Category: Air Quality and Air Toxics , Particulate Matter , Air
Objective:
The overall objective of this project is to improve our ability to characterize air pollutant exposures for health effects studies. This project is one of three research studies proposed under Theme I: Assessing Particle Exposures for Health Effects Studies that were based on personal, indoor, and outdoor particulate and gas concentrations that were measured as part of our previous or current exposure studies. This project was intended to address Particulate Matter Research Topics 1, 5, and 7 identified by the National Research Council (NRC)- Outdoor Measures vs. Actual Exposures for Particles, Particle Components, and Gaseous Co-Pollutants. This project was intended to examine the ability of outdoor particulate concentrations to estimate exposures for a community.
Progress Summary:
We have performed a series of exposure studies in several cities located throughout the United States (Boston, MA; Baltimore, MD; Atlanta, GA; Los Angeles, CA; and Steubenville, OH). As part of these studies, we have collected several thousand simultaneous outdoor, indoor, and personal particle and gas samples for several potentially sensitive subgroups, including senior citizens, children, and individuals with chronic obstructive pulmonary disease (COPD) or recent myocardial infarctions (MI). For Atlanta and Steubenville, measurements of cardiovascular health status (heart rate, blood pressure, oxygen saturation, daily symptoms and medication use) also were collected for each participant. Data collection for the Steubenville and Atlanta studies was co-funded by the Center, while data collection for the remaining studies was supported by other agencies, such as the Health Effects Institute, the Electric Power Research Institute, the American Petroleum Institute, and the EPA (under a separate cooperative agreement).
As part of this project, we have begun to analyze data from these studies to investigate (1) the contribution of particles of outdoor and indoor origin to personal PM2.5 exposures, (2) the potential for confounding by gaseous pollutants to affect epidemiological study results, and (3) the ability of particles to penetrate from outdoor to indoor environments. To date, we have published or submitted four papers addressing these issues (Sarnat, et al., 2000; Sarnat, et al., in press; Long, et al., 2000; Long, et al., in press). Together, results from these studies indicate that home characteristics, such as ventilation, are the primary determinant of the relationship among personal, indoor, and outdoor particle levels.
A key finding of Sarnat, et al., is that while ambient PM2.5 concentrations are good surrogates for personal exposure to PM2.5 of ambient origin, ambient concentrations of gaseous air pollutants are not good surrogates of personal exposures to those gases. Rather, they are much better surrogates of personal exposure to PM2.5 of ambient origin. This indicates that reported associations of ambient gases with health outcomes in time series studies may need to be interpreted as effects of particles.
Future Activities:
We will continue to analyze data from these studies to investigate: (1) the contribution of particles of outdoor and indoor origin to personal PM2.5 exposures, (2) the potential for confounding by gaseous pollutants to affect epidemiological study results, and (3) the ability of particles to penetrate from outdoor to indoor environments. We also will continue to publish or submit papers addressing these issues for publication.
Journal Articles on this Report : 1 Displayed | Download in RIS Format
Other subproject views: | All 6 publications | 6 publications in selected types | All 6 journal articles |
---|---|---|---|
Other center views: | All 207 publications | 205 publications in selected types | All 204 journal articles |
Type | Citation | ||
---|---|---|---|
|
Sarnat JA, Koutrakis P, Suh HH. Assessing the relationship between personal particulate and gaseous exposures of senior citizens living in Baltimore, MD. Journal of the Air & Waste Management Association 2000;50(7):1184-1198. |
R827353 (Final) R827353C001 (2000) R827353C001 (2001) R827353C001 (2002) R827353C001 (2003) R827353C001 (2004) R827353C001 (Final) |
Exit Exit |
Supplemental Keywords:
particulate matter, PM2.5, PM10, air pollutants, particulates, health effects, exposure, ambient particles, susceptibility, metals, public policy, biology, engineering, epidemiology, toxicology, environmental chemistry, monitoring., RFA, Health, Scientific Discipline, Air, Air Pollution Monitoring, particulate matter, Toxicology, air toxics, Environmental Chemistry, Epidemiology, Risk Assessments, Environmental Microbiology, Environmental Monitoring, indoor air, Atmospheric Sciences, Molecular Biology/Genetics, Biology, ambient air quality, monitoring, particle size, particulates, risk assessment, sensitive populations, chemical exposure, air pollutants, cardiopulmonary responses, human health effects, indoor exposure, lung, ambient air monitoring, exposure and effects, ambient air, ambient measurement methods, exposure, pulmonary disease, developmental effects, epidemelogy, respiratory disease, COPD, air pollution, ambient monitoring, children, particle exposure, chronic effects, human exposure, inhalation, pulmonary, particulate exposure, ambient particle health effects, inhaled, PM, inhalation toxicology, cardiopulmonary, indoor air quality, human health, air quality, cardiovascular disease, dosimetry, exposure assessment, human health risk, respiratory, measurement methodsRelevant Websites:
http://www.hsph.harvard.edu/epacenter/homeframe.htm Exit
Progress and Final Reports:
Original AbstractMain Center Abstract and Reports:
R827353 Health Effects Institute (2015 - 2020) Subprojects under this Center: (EPA does not fund or establish subprojects; EPA awards and manages the overall grant for this center).
R827353C001 Assessing Human Exposures to Particulate and Gaseous Air Pollutants
R827353C002 Quantifying Exposure Error and its Effect on Epidemiological
Studies
R827353C003 St. Louis Bus, Steubenville and Atlanta Studies
R827353C004 Examining Conditions That Predispose Towards
Acute Adverse Effects of Particulate Exposures
R827353C005 Assessing Life-Shortening Associated with Exposure to
Particulate Matter
R827353C006 Investigating Chronic Effects of Exposure to Particulate
Matter
R827353C007 Determining the Effects of Particle Characteristics on Respiratory Health of Children
R827353C008 Differentiating the Roles of Particle Size, Particle Composition,
and Gaseous Co-Pollutants on Cardiac Ischemia
R827353C009 Assessing Deposition of Ambient Particles in the Lung
R827353C010 Relating Changes in Blood Viscosity, Other Clotting Parameters,
Heart Rate, and Heart Rate Variability to Particulate and Criteria Gas Exposures
R827353C011 Studies of Oxidant Mechanisms
R827353C012 Modeling Relationships Between Mobile Source Particle Emissions and Population Exposures
R827353C013 Toxicological Evaluation of Realistic Emissions of Source Aerosols (TERESA) Study
R827353C014 Identifying the Physical and Chemical Properties of Particulate Matter Responsible for the Observed Adverse Health Effects
R827353C015 Research Coordination Core
R827353C016 Analytical and Facilities Core
R827353C017 Technology Development and Transfer Core
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Conclusions drawn by the principal investigators have not been reviewed by the Agency.
Project Research Results
- Final Report
- 2004 Progress Report
- 2003 Progress Report
- 2002 Progress Report
- 2001 Progress Report
- 1999 Progress Report
- Original Abstract
6 journal articles for this subproject
Main Center: R827353
207 publications for this center
204 journal articles for this center