Grantee Research Project Results
Modeling Relationships Between Mobile Source Particle Emissions and Population Exposures
EPA Grant Number: R827353C012Subproject: this is subproject number 012 , established and managed by the Center Director under grant R827353
(EPA does not fund or establish subprojects; EPA awards and manages the overall grant for this center).
Center: Health Effects Institute (2015 - 2020)
Center Director: Greenbaum, Daniel S.
Title: Modeling Relationships Between Mobile Source Particle Emissions and Population Exposures
Investigators: Spengler, John D.
Current Investigators: Spengler, John D. , Greco, Susan L , Evans, John S. , Wilson, A. , Stevens, G. , Levy, Jonathan
Institution: Harvard University
EPA Project Officer: Chung, Serena
Project Period: June 1, 1999 through May 31, 2005 (Extended to May 31, 2006)
RFA: Airborne Particulate Matter (PM) Centers (1999) RFA Text | Recipients Lists
Research Category: Air Quality and Air Toxics , Particulate Matter , Air
Objective:
For year 6 of the project, we had proposed extending our intake fraction (iF) methodology to address motor vehicle emissions, as a way of informing PM control decisions and future analyses. Our specific objectives were to:
- Evaluate geographic patterns in primary and secondary particulate matter iFs for mobile sources, using a national-scale source-receptor (S-R) matrix
- Determine the relative contributions of near-source and long-range populations to particulate matter iFs for mobile sources in different geographic locations
- Develop predictive regression equations for iFs to explain geographic patterns as a function of population density and meteorological covariates.
Publications and Presentations:
Publications have been submitted on this subproject: View all 3 publications for this subproject | View all 207 publications for this centerJournal Articles:
Journal Articles have been submitted on this subproject: View all 3 journal articles for this subproject | View all 204 journal articles for this centerSupplemental Keywords:
exposure, health effects, susceptibility, metals, public policy, biology, engineering, epidemiology, toxicology, environmental chemistry, monitoring, air pollutants, air pollution, air quality, ambient air, ambient air monitoring, ambient air quality, ambient measurement methods, ambient monitoring, ambient particle health effects, ambient particles, animal inhalation study, assessment of exposure, biological mechanism, biological response, cardiopulmonary, cardiopulmonary response, cardiovascular disease, chemical exposure, children, developmental effects, dosimetry, environmental health hazard, exposure and effects, genetic susceptibility, health risks, human exposure, human health, human health effects, human health risk, human susceptibility, indoor air quality, indoor exposure, inhalation, inhalation toxicology, inhaled particles, lead, measurement methods, particle exposure, particulate exposure, particulates, pulmonary, pulmonary disease, respiratory, respiratory disease, risk assessment, sensitive populations, stratospheric ozone,, RFA, Scientific Discipline, Health, PHYSICAL ASPECTS, Air, ENVIRONMENTAL MANAGEMENT, HUMAN HEALTH, Air Pollution Monitoring, particulate matter, Toxicology, air toxics, Environmental Chemistry, Epidemiology, Air Pollution Effects, Risk Assessments, Susceptibility/Sensitive Population/Genetic Susceptibility, Environmental Monitoring, Health Effects, Physical Processes, Children's Health, genetic susceptability, indoor air, tropospheric ozone, Molecular Biology/Genetics, Biology, Environmental Engineering, Risk Assessment, ambient air quality, interindividual variability, microbiology, molecular epidemiology, monitoring, particulates, sensitive populations, chemical exposure, air pollutants, cardiopulmonary responses, health risks, human health effects, indoor exposure, ambient air monitoring, exposure and effects, ambient air, ambient measurement methods, exposure, lead, pulmonary disease, developmental effects, epidemelogy, biological response, respiratory disease, air pollution, ambient monitoring, children, Human Health Risk Assessment, particle exposure, biological mechanism , cardiopulmonary response, human exposure, inhalation, mobile sources, pulmonary, susceptibility, particulate exposure, assessment of exposure, ambient particle health effects, PM, epidemeology, human susceptibility, environmental health hazard, inhalation toxicology, cardiopulmonary, indoor air quality, inhaled particles, modeling studies, measurement methods , air quality, cardiovascular disease, dosimetry, human health risk, metals, respiratory, genetic susceptibilityProgress and Final Reports:
Main Center Abstract and Reports:
R827353 Health Effects Institute (2015 - 2020) Subprojects under this Center: (EPA does not fund or establish subprojects; EPA awards and manages the overall grant for this center).
R827353C001 Assessing Human Exposures to Particulate and Gaseous Air Pollutants
R827353C002 Quantifying Exposure Error and its Effect on Epidemiological
Studies
R827353C003 St. Louis Bus, Steubenville and Atlanta Studies
R827353C004 Examining Conditions That Predispose Towards
Acute Adverse Effects of Particulate Exposures
R827353C005 Assessing Life-Shortening Associated with Exposure to
Particulate Matter
R827353C006 Investigating Chronic Effects of Exposure to Particulate
Matter
R827353C007 Determining the Effects of Particle Characteristics on Respiratory Health of Children
R827353C008 Differentiating the Roles of Particle Size, Particle Composition,
and Gaseous Co-Pollutants on Cardiac Ischemia
R827353C009 Assessing Deposition of Ambient Particles in the Lung
R827353C010 Relating Changes in Blood Viscosity, Other Clotting Parameters,
Heart Rate, and Heart Rate Variability to Particulate and Criteria Gas Exposures
R827353C011 Studies of Oxidant Mechanisms
R827353C012 Modeling Relationships Between Mobile Source Particle Emissions and Population Exposures
R827353C013 Toxicological Evaluation of Realistic Emissions of Source Aerosols (TERESA) Study
R827353C014 Identifying the Physical and Chemical Properties of Particulate Matter Responsible for the Observed Adverse Health Effects
R827353C015 Research Coordination Core
R827353C016 Analytical and Facilities Core
R827353C017 Technology Development and Transfer Core
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Conclusions drawn by the principal investigators have not been reviewed by the Agency.
Project Research Results
3 journal articles for this subproject
Main Center: R827353
207 publications for this center
204 journal articles for this center