Skip to main content
U.S. flag

An official website of the United States government

Here’s how you know

Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

HTTPS

Secure .gov websites use HTTPS
A lock (LockA locked padlock) or https:// means you have safely connected to the .gov website. Share sensitive information only on official, secure websites.

  • Environmental Topics
  • Laws & Regulations
  • Report a Violation
  • About EPA
Contact Us

Grantee Research Project Results

Reducing the reliance on early-life stage testing with relevance to euryhaline fishes: Development and implementation of in-vitro assays predictive of early life stage toxicity and population-level effects in Menidia beryllina

EPA Grant Number: R839503
Title: Reducing the reliance on early-life stage testing with relevance to euryhaline fishes: Development and implementation of in-vitro assays predictive of early life stage toxicity and population-level effects in Menidia beryllina
Investigators: Brander, Susanne M , Chappell, Patrick , Armbrust, Kevin , White, Wilson
Institution: Oregon State University , Louisiana State University
EPA Project Officer: Chung, Serena
Project Period: August 1, 2019 through April 23, 2025
Project Amount: $849,988
RFA: Advancing Actionable Alternatives to Vertebrate Animal Testing for Chemical Safety Assessment (2018) RFA Text |  Recipients Lists
Research Category: Chemical Safety for Sustainability

Description:

Although the Tox21 directive has been in place for over a decade, toxicity assessment of aquatic pollutants, particularly for estuarine and marine ecosystems, still requires large numbers of live fishes. A handful of in vitro assays have been developed for euryhaline species, however, many are not in EPA-approved models. Further complicating euryhaline in vitro model development is the documented alteration in uptake and bioavailability of many compounds at higher salinities, which is difficult to account for with cell lines.

Objective:

As such, we describe three major objectives: 1. Develop in vitro assays complementary to assays such as the fish early life stage (FELS) and larval growth and survival (LGS), thus reducing reliance on in vivo testing, 2. Quantify internal exposure concentrations of model developmental toxicants across a salinity gradient during in vivo testing, to generate dosimetry for mimicking exposures in vitro, and 3. Use a combination of genomic tools and demographic modeling in a "middle-out" approach that links the phenotypic anchors (e.g. deformities) measured in vivo to biomarker candidates and population-level outcomes.

Approach:

Objectives will be met via a highly interdisciplinary approach tapping expertise across cell and molecular biology, aquatic toxicology, analytical chemistry, and quantitative ecology. Firstly, cell lines will be developed from both embryonic and differentiated tissues (cardiomyocytes, osteoblasts, hepatocytes). Concurrently, early life stage testing in M. beryllina will be conducted using a suite of pesticides established to cause tissue specific effects (e.g. cardiotoxicity, skeletal deformities, hepatoxicity), across a concentration (5 levels) and salinity gradient (0, 10, 20, 30 PSU). Internal concentrations will be measured in embryos and larvae, and used for cell line exposures. Both RNA seq and targeted qPCR, with a focus on common genes underlying cardiotoxicity, hepatoxicity, and osteotoxicity, will be conducted in embryos, fish larvae, and cell lines. We will thus generate plausible candidates for molecular initiating events (MIEs) that trigger observed phenotypic or population-level alterations.

Expected Results:

We hypothesize that MIE candidates linked to adverse phenotypes and population-level changes (e.g. growth, rate of hatch or survival) will be identified through this combination of in vitro and in vivo approaches used to probe the transcriptome and that as a result the M. beryllina cell lines created could then be implemented as a predictive assay for organismal and population-level effects, and used as a first tier, high throughput approach to decrease the number of live animals needed for testing of pollutant impacts in marine and estuarine ecosystems. Ultimately this would both reduce the cost and increase the accuracy of risk assessment, which is increasingly important given the number of new chemicals that arrive on the market each year and the limited resources available for toxicity testing.

Publications and Presentations:

Publications have been submitted on this project: View all 9 publications for this project

Journal Articles:

Journal Articles have been submitted on this project: View all 8 journal articles for this project

Supplemental Keywords:

pesticides, molecular level, toxicology, inland silverside, estuarine, salinity, ecological effects, exposure, modeling, environmental chemistry, bioavailability

Progress and Final Reports:

  • 2020 Progress Report
  • 2021 Progress Report
  • 2022 Progress Report
  • 2023 Progress Report
  • 2024 Progress Report
  • Final
  • Top of Page

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Conclusions drawn by the principal investigators have not been reviewed by the Agency.

    Project Research Results

    • Final
    • 2024 Progress Report
    • 2023 Progress Report
    • 2022 Progress Report
    • 2021 Progress Report
    • 2020 Progress Report
    9 publications for this project
    8 journal articles for this project

    Site Navigation

    • Grantee Research Project Results Home
    • Grantee Research Project Results Basic Search
    • Grantee Research Project Results Advanced Search
    • Grantee Research Project Results Fielded Search
    • Publication search
    • EPA Regional Search

    Related Information

    • Search Help
    • About our data collection
    • Research Grants
    • P3: Student Design Competition
    • Research Fellowships
    • Small Business Innovation Research (SBIR)
    Contact Us to ask a question, provide feedback, or report a problem.
    Last updated April 28, 2023
    United States Environmental Protection Agency

    Discover.

    • Accessibility
    • Budget & Performance
    • Contracting
    • EPA www Web Snapshot
    • Grants
    • No FEAR Act Data
    • Plain Writing
    • Privacy
    • Privacy and Security Notice

    Connect.

    • Data.gov
    • Inspector General
    • Jobs
    • Newsroom
    • Open Government
    • Regulations.gov
    • Subscribe
    • USA.gov
    • White House

    Ask.

    • Contact EPA
    • EPA Disclaimers
    • Hotlines
    • FOIA Requests
    • Frequent Questions

    Follow.