Skip to main content
U.S. flag

An official website of the United States government

Here’s how you know

Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

HTTPS

Secure .gov websites use HTTPS
A lock (LockA locked padlock) or https:// means you have safely connected to the .gov website. Share sensitive information only on official, secure websites.

  • Environmental Topics
  • Laws & Regulations
  • Report a Violation
  • About EPA
Contact Us

Grantee Research Project Results

2004 Progress Report: A Novel Ion Exchange Process for Selective Removal of As(V) and Enhanced Stability of Process Residuals

EPA Grant Number: R831431
Title: A Novel Ion Exchange Process for Selective Removal of As(V) and Enhanced Stability of Process Residuals
Investigators: Zhao, Dongye , Barnett, Mark
Institution: Auburn University Main Campus
EPA Project Officer: Richards, April
Project Period: November 1, 2003 through October 31, 2005
Project Period Covered by this Report: November 1, 2003 through October 31, 2004
Project Amount: $99,452
RFA: New Technologies for the Environment (NTE) (2003) RFA Text |  Recipients Lists
Research Category: Nanotechnology , Pollution Prevention/Sustainable Development , Sustainable and Healthy Communities

Objective:

The objectives of this research project are to: (1) develop a new class of polymeric ligand exchangers (PLEs) for highly selective removal of arsenate from water; (2) characterize the new materials with respect to sorption capacity, kinetics, arsenate selectivity, breakthrough behaviors, and regeneration through a series of batch and column experiments; (3) test the reusability of spent regenerant brine; and (4) develop an engineered approach to treat the spent regenerant to minimize brine need and waste volume and to maximize the stability of the resultant process waste residuals.

Progress Summary:

The major findings are summarized as follows:

  • Compared to conventional strong base anion exchange resins, the copper-loaded PLE, DOW 3N-Cu, was found to offer more than 10 times greater treatment capacity for arsenate in fixed-bed column runs, and the arsenic selectivity of DOW 3N-Cu is 60 to120 times greater based on the binary arsenate/sulfate separation factor. Consequently, DOW 3N-Cu potentially can cut down the regenerant needs and the amount of process waste residuals by 90 percent.
  • Two new PLEs, XAD1180-2N, and XAD16-2N, were synthesized based on two commercially available matrices (XAD 1180 and XAD 16). The new PLEs showed equally great selectivity for arsenic as DOW 3N-Cu. The total arsenic capacity, however, was limited by their lower overall capacity. Nonetheless, the new PLEs were able to treat nearly 1,000 bed volumes of contaminated water per operation run and can be easily regenerated for multiple uses. We found that the lowered overall capacity of the new PLEs was caused by the unusually high cross linkage of the XAD resins’ matrices.
  • The arsenate sorption kinetics of DOW 3N-Cu is comparable to that of typical conventional macroporous sorbents. The intraparticle diffusivity was determined to be 1.4 x 10-8 cm2/s.
  • All PLEs can be regenerated very efficiently using 4-6 percent NaCl at pH approximately 9.1 and can be used in multiple cycles (> 10) of operation without any loss in capacity.
  • The same spent brine can be used repeatedly for regenerating the PLEs more than five times without major treatment other than pH adjustment.
  • Arsenic in the spent regenerant can be removed effectively (> 99%) using aluminum salts (sulfate or chloride) at a Al:As molar ratio of greater than 5.0 and a pH range of 5.0 to 8.0. The treated brine, upon pH adjustment, offered equally high regeneration efficiency, which further cuts down the regenerant needs.
  • Toxicity Characteristic Leaching Procedure (TCLP) results indicate that the arsenic leachability in the process sludge can be reduced by 80 percent when the Al:As molar ratio is increased from 5 to 10.
  • Waste extract test results indicate that the arsenic leachability in the process sludge can be reduced by 50 percent when the Al:As molar ratio is increased from 5 to 10.

Future Activities:

We will:

  • Continue to optimize the treatment recipe for minimizing the volume and reducing the leachability of the As-laden spent brine. Emphasis will be placed on the effects of aging, temperature, type of the coagulants (Fe vs. Al), pH, and metal dosage.
  • Continue to synthesize a polymer matrix with better controlled cross-linkage and porosity for preparing PLEs of greater total capacity.
  • Conduct a cost analysis of the PLE-based process. The cost and benefit of the process will be compared with those for other technologies used for As removal
  • .


Journal Articles on this Report : 2 Displayed | Download in RIS Format

Publications Views
Other project views: All 18 publications 5 publications in selected types All 5 journal articles
Publications
Type Citation Project Document Sources
Journal Article An B, Fu Z, Xiong Z, Zhao D. Preparation and characterization of a new class of polymeric ligand exchangers for selective removal of arsenate from drinking water. Separation Science and Technology R831431 (2004)
not available
Journal Article Steinwinder T, An B, Zhao D. Engineered treatment of As-laden spent regenerant brine for enhanced stability of process waste residuals and for reuse of the spent regenerant. AWWA Journal (to be submitted, 2005). R831431 (2004)
not available

Supplemental Keywords:

adsorption, arsenic, arsenate, chemicals, cleanup, co-precipitation, cost-benefit analysis, drinking water, engineering, environmental chemistry, groundwater, hazardous waste, heavy metals, ion exchange, innovative technology, leachate, ligand exchange, ligand exchanger, metals, northeast, regenerant reuse, regeneration, remediation, removal, residuals, selective removal, soil, toxics, southwest, TCLP, TTLC, waste minimization, waste reduction, waste residual, water, water treatment, WET,, Sustainable Industry/Business, RFA, Scientific Discipline, INTERNATIONAL COOPERATION, TREATMENT/CONTROL, Water, POLLUTANTS/TOXICS, Chemical Engineering, Environmental Chemistry, Arsenic, cleaner production/pollution prevention, Drinking Water, New/Innovative technologies, Environmental Monitoring, Water Pollutants, Technology, ion exchange, pollution prevention, detoxification, drinking water treatment facilities, analytical methods, green engineering, drinking water system, drinking water contaminants, drinking water treatment, clean technologies, polymeric ligand exchangers, green chemistry, drinking water distribution system, arsenic removal

Progress and Final Reports:

Original Abstract
  • Final Report
  • Top of Page

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Conclusions drawn by the principal investigators have not been reviewed by the Agency.

    Project Research Results

    • Final Report
    • Original Abstract
    18 publications for this project
    5 journal articles for this project

    Site Navigation

    • Grantee Research Project Results Home
    • Grantee Research Project Results Basic Search
    • Grantee Research Project Results Advanced Search
    • Grantee Research Project Results Fielded Search
    • Publication search
    • EPA Regional Search

    Related Information

    • Search Help
    • About our data collection
    • Research Grants
    • P3: Student Design Competition
    • Research Fellowships
    • Small Business Innovation Research (SBIR)
    Contact Us to ask a question, provide feedback, or report a problem.
    Last updated April 28, 2023
    United States Environmental Protection Agency

    Discover.

    • Accessibility
    • Budget & Performance
    • Contracting
    • EPA www Web Snapshot
    • Grants
    • No FEAR Act Data
    • Plain Writing
    • Privacy
    • Privacy and Security Notice

    Connect.

    • Data.gov
    • Inspector General
    • Jobs
    • Newsroom
    • Open Government
    • Regulations.gov
    • Subscribe
    • USA.gov
    • White House

    Ask.

    • Contact EPA
    • EPA Disclaimers
    • Hotlines
    • FOIA Requests
    • Frequent Questions

    Follow.