Skip to main content
U.S. flag

An official website of the United States government

Here’s how you know

Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

HTTPS

Secure .gov websites use HTTPS
A lock (LockA locked padlock) or https:// means you have safely connected to the .gov website. Share sensitive information only on official, secure websites.

  • Environmental Topics
  • Laws & Regulations
  • Report a Violation
  • About EPA
Contact Us

Grantee Research Project Results

Tin Zeolites for Partial Oxidation Catalysis

EPA Grant Number: R825370C072
Subproject: this is subproject number 072 , established and managed by the Center Director under grant R825370
(EPA does not fund or establish subprojects; EPA awards and manages the overall grant for this center).

Center: Human Models for Analysis of Pathways (H MAPs) Center
Center Director: Murphy, William L
Title: Tin Zeolites for Partial Oxidation Catalysis
Investigators: Root, Thatcher W.
Institution: University of Wisconsin - Madison
EPA Project Officer: Aja, Hayley
Project Period: January 1, 1997 through January 1, 1999
RFA: Exploratory Environmental Research Centers (1992) RFA Text |  Recipients Lists
Research Category: Center for Clean Industrial and Treatment Technologies (CenCITT) , Targeted Research

Objective:

This investigation of novel zeolites with tin framework substitution has the following two objectives:

1) exploration of reaction activity and selectivity for hydrogen peroxide partial oxidation of selected organic chemicals; and
2) mechanistic studies of tin active sites to define the limiting behavior possible with this class of catalysts.

Approach:

The project work plan involves several steps:

    1) synthesis of novel tin-containing zeolites,
    2) measurement of reaction kinetics and selectivities for candidate reaction systems, and
    3) spectroscopic studies using a variety of sophisticated catalyst characterization techniques, including our specialty of solid-state multinuclear nuclear magnetic resonance (NMR) (for routine studies of Si, novel investigation of Sn).

In their lab, the investigators have established new capabilities for synthesizing silicalite and tin-containing silicalites. Several routine zeolite structural characterization or verification tools have been implemented, including XRD, FTIR, and ICP, which allow us to demonstrate critical tin incorporation into the zeolite lattice.

The investigators have built, calibrated, and operated two batch microreactors that allow us to measure reaction kinetics and selectivities for our initial test reaction, oxidation of phenol to hydroquinone or catechol using hydrogen peroxide. We have also investigated the use of ethylbenzene oxidation as an alternative probe reaction. Now underway are experiments aimed at refining the zeolite synthesis, both to better control tin content and to extend products to other promising silicate lattices in addition to the MFI structure.

The investigators are also improving reactor product analysis. Substantial effort is being focused on development of 119Sn solid-state NMR as a novel probe of the active site in these poorly understood catalysts. Difficulties have been encountered in consistency of zeolite synthesis from batch to batch, especially in the crystal yield, so this is receiving ongoing attention as we strive to modify procedures to minimize variations and maximize yields.

Expected Results:

This research is significant for development of environmentally benign chemical processes. Partial oxidation reactions abound in the specialty chemicals, fine chemicals, and pharmaceuticals industries, and often use undesirable chlorinated reactants to activate the reactions, or have other inorganic co-reactants that produce substantial process waste. Replacement of these processes with new chemistry using the benign reactant hydrogen peroxide is desirable, but these new processes will require innovative catalysts that activate the peroxide and direct its selective oxidation reactions.

One successful example is the use of titanosilicalite TS-1 by an Enichem plant in Italy for the oxidation of phenol to hydroquinone and catechol (used in photography, pigments, and pharmaceuticals). Recent work has shown that substitution of tin, vanadium, or other reducible elements into silicalite can potentially produce new catalysts that allow control of the selectivity between products for these reactions. Other partial oxidation reactions using hydrogen peroxide, such as olefin expoxidation, are also possible with these catalysts, but have not yet been explored or developed into practical processes.

Publications and Presentations:

Publications have been submitted on this subproject: View all 1 publications for this subproject | View all 155 publications for this center

Supplemental Keywords:

technology for sustainable environment, environmental chemistry, clean technology, environmental engineering, pollution prevention, cleaner production, environmentally benign chemical processes, catalytic research, tin zeolites, catalytic oxidation., Sustainable Industry/Business, RFA, Scientific Discipline, Ecosystem Protection/Environmental Exposure & Risk, TREATMENT/CONTROL, INTERNATIONAL COOPERATION, POLLUTANTS/TOXICS, Technology for Sustainable Environment, Chemical Engineering, Engineering, pollution prevention, Chemistry, Sustainable Environment, Environmental Chemistry, computing technology, cleaner production/pollution prevention, Chemicals, Environmental Engineering, Technology, clean technology, modeling tool, environmental data, Clean Process Advisory System (CPAS), oxidation catalysis, environmental simulation and design tools, catalytic hydrogenation, clean manufacturing designs, computer simulation modeling, pollution prevention design tool, data sharing, polymers, tin zeolites, pollution prevention design, clean technologies, cleaner production, catalysis, modeling, pollution prevention model, pollution control, computer science

Progress and Final Reports:

  • 1997
  • Final

  • Main Center Abstract and Reports:

    R825370    Human Models for Analysis of Pathways (H MAPs) Center

    Subprojects under this Center: (EPA does not fund or establish subprojects; EPA awards and manages the overall grant for this center).
    R825370C032 Means for Producing an Entirely New Generation of Lignin-Based Plastics
    R825370C042 Environmentally Conscious Design for Construction
    R825370C046 Clean Process Advisory System (CPAS) Core Activities
    R825370C048 Investigation of the Partial Oxidation of Methane to Methanol in a Simulated Countercurrent Moving Bed Reactor
    R825370C054 Predictive Tool for Ultrafiltration Performance
    R825370C055 Heuristic Reactor Design for Clean Synthesis and Processing - Separative Reactors
    R825370C056 Characterization of Selective Solid Acid Catalysts Towards the Rational Design of Catalytic Reactions
    R825370C057 Environmentally Conscious Manufacturing: Prediction of Processing Waste Streams for Discrete Products
    R825370C064 The Physical Properties Management System (PPMS™): A P2 Engineering Aid to Support Process Design and Analysis
    R825370C065 Development and Testing of Pollution Prevention Design Aids for Process Analysis and Decision Making
    R825370C066 Design Tools for Chemical Process Safety: Accident Probability
    R825370C067 Environmentally Conscious Manufacturing: Design for Disassembly (DFD) in De-Manufacturing of Products
    R825370C068 An Economic Comparison of Wet and Dry Machining
    R825370C069 In-Line Copper Recovery Technology
    R825370C070 Selective Catalytic Hydrogenation of Lactic Acid
    R825370C071 Biosynthesis of Polyhydroxyalkanoate Polymers from Industrial Wastewater
    R825370C072 Tin Zeolites for Partial Oxidation Catalysis
    R825370C073 Development of a High Performance Photocatalytic Reactor System for the Production of Methanol from Methane in the Gas Phase
    R825370C074 Recovery of Waste Polymer Generated by Lost Foam Technology in the Metal Casting Industry
    R825370C075 Industrial Implementation of the P2 Framework
    R825370C076 Establishing Automated Linkages Between Existing P2-Related Software Design Tools
    R825370C077 Integrated Applications of the Clean Process Advisory System to P2-Conscious Process Analysis and Improvement
    R825370C078 Development of Environmental Indices for Green Chemical Production and Use

    Top of Page

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Conclusions drawn by the principal investigators have not been reviewed by the Agency.

    Project Research Results

    • Final
    • 1997
    1 publications for this subproject
    Main Center: R825370
    155 publications for this center
    36 journal articles for this center

    Site Navigation

    • Grantee Research Project Results Home
    • Grantee Research Project Results Basic Search
    • Grantee Research Project Results Advanced Search
    • Grantee Research Project Results Fielded Search
    • Publication search
    • EPA Regional Search

    Related Information

    • Search Help
    • About our data collection
    • Research Grants
    • P3: Student Design Competition
    • Research Fellowships
    • Small Business Innovation Research (SBIR)
    Contact Us to ask a question, provide feedback, or report a problem.
    Last updated April 28, 2023
    United States Environmental Protection Agency

    Discover.

    • Accessibility
    • Budget & Performance
    • Contracting
    • EPA www Web Snapshot
    • Grants
    • No FEAR Act Data
    • Plain Writing
    • Privacy
    • Privacy and Security Notice

    Connect.

    • Data.gov
    • Inspector General
    • Jobs
    • Newsroom
    • Open Government
    • Regulations.gov
    • Subscribe
    • USA.gov
    • White House

    Ask.

    • Contact EPA
    • EPA Disclaimers
    • Hotlines
    • FOIA Requests
    • Frequent Questions

    Follow.