Skip to main content
U.S. flag

An official website of the United States government

Here’s how you know

Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

HTTPS

Secure .gov websites use HTTPS
A lock (LockA locked padlock) or https:// means you have safely connected to the .gov website. Share sensitive information only on official, secure websites.

  • Environmental Topics
  • Laws & Regulations
  • Report a Violation
  • About EPA
Contact Us

Grantee Research Project Results

2020 Progress Report: Prediction of Nonlinear Climate Variations Impacts on Eutrophication and Ecosystem Processes and Evaluation of Adaptation Measures in Urban and Urbanizing Watersheds

EPA Grant Number: R835866
Title: Prediction of Nonlinear Climate Variations Impacts on Eutrophication and Ecosystem Processes and Evaluation of Adaptation Measures in Urban and Urbanizing Watersheds
Investigators: Barber, Michael , Goel, Ramesh , Burian, Steven , Hinners, Sarah , Clark, Brett
Institution: University of Utah
EPA Project Officer: Packard, Benjamin H
Project Period: September 1, 2015 through August 31, 2018 (Extended to August 31, 2021)
Project Period Covered by this Report: September 1, 2019 through August 31,2020
Project Amount: $1,250,000
RFA: National Priorities: Systems-Based Strategies to Improve The Nation’s Ability to Plan And Respond to Water Scarcity and Drought Due to Climate Change (2014) RFA Text |  Recipients Lists
Research Category: Water

Objective:

The Jordan River experiences many of the water quality concerns shared by urban streams throughout the western United States including problems with total dissolved solids, temperature, E Coli, and dissolved oxygen (DO). Droughts, changes in snow melt timing, and extreme events induced by climate change and the implications of land use changes due to population and economic growth are not explicitly factored into the solution schemes. In other words, some of the most important natural and human dimensions influencing these ecosystems are missing. Thus proposed solutions are likely to be inadequate with respect to the magnitudes of the problem and they often pit upstream users against downstream interests rather than address the challenges in an integrated fashion. To meet U.S. EPA program goals, this project was specifically designed to investigate the direct and secondary interrelated impacts of climate change (including extreme events) on surface and groundwater water quality and availability in the Jordan River watershed for the protection of human and ecosystem health, and develop innovative, cost-effective management options that address these impacts.

The objectives of this research are to address current and future water quality concerns by develop a dynamic water quantity/quality model of Jordan River watershed using SWMM, DHSVM, EFDC, and WASP. This unique modeling effort will include integration of climate projections into prediction of 2050 water quantity and quality baseline scenarios and field and laboratory analysis to parameterize kinetic coefficients and determine non-linear responses under climate scenarios. Other factors include examination of land use planning implications including scale-related phenomenon related to headwater versus downstream economic, social, and ecosystem constraints. Through the use of participatory stakeholder workshops, we will develop future scenarios related to conservation, reuse, land use changes due to population, BMP/LID implementation, wildfire disturbances, and water management. The resulting information will be used to examine impacts of scenarios and levels of investments needed to achieve a sustainable environment for economic and ecosystem protection and create a framework for maximizing value of BMP placement through off-site investment to achieve water quantity and quality goals.

 

Progress Summary:

Conducted measurements and analysis related to critical water quality issues associated with harmful algae blooms (HABs). Found several important nutrient-related mechanisms in Utah Lake including i) the phosphorus metabolism detected a trend to initiate a nutrient starvation alert, ii) the Microcystin-LR negatively affected nitrification rates even at 0.25 μg/L concentration, and iii) nitrifying bacteria partially recovered their activity once the toxin stress was withdrawn.

Provided interdisciplinary training for 5 PhD students.

Engaged stakeholders throughout the Utah Lake/Jordan River watershed.

Demonstrated climate impacts on drinking water supplies for greater Salt Lake City.

Produced five 2020 journal papers and numerous conference presentations/papers.

Created framework tool for water quality trading.

Participated in Jordan River Blueprint survey and discussion.

Jordan River WASP model will be used as a basis for TMDL investigations by State of Utah.

Future Activities:

The expected outcomes of this project include:

A dynamic tool capable of accurately predicting the appropriate numeric nutrient criteria for the Jordan River and Utah Lake necessary to prevent eutrophication under existing and future climate conditions.

An integrated process-systems model capable of coupling detailed watershed-water quality dynamics (the process model) with planning, policy, people, and interconnected systems such as water supply and water demand (the systems model).

At least three peer-reviewed journal papers in engineering, ecology, planning, and sociology related venues.

Public workshops to Jordan River stakeholders and other public outreach activities such as community seminars and K-12 education.

Revised curriculum contents integrating interdisciplinary research approaches and findings into case studies designed to expand the envelope of creative thinking.


Journal Articles on this Report : 8 Displayed | Download in RIS Format

Publications Views
Other project views: All 27 publications 11 publications in selected types All 10 journal articles
Publications
Type Citation Project Document Sources
Journal Article Hansen CH, Burian SJ, Dennison PE, William GP. Evaluating historical trends and influences of meteorological and seasonal climate conditions on lake chlorophyll a using remote sensing. Lake and Reservoir Management. 2020;36(1):45-63. R835866 (2020)
  • Abstract: Taylor and Francis Online Abstract HTML
    Exit
  • Journal Article Li H, Alsanea A, Barber M, Goel R. High-throughput DNA sequencing reveals the dominance of pico-and other filamentous cyanobacteria in an urban freshwater Lake. Science of the Total Environment 2018;611:465-480. R835866 (2018)
    R835866 (2019)
    R835866 (2020)
  • Full-text: ScienceDirect-Full Text HTML
    Exit
  • Abstract: ScienceDirect-Abstract
    Exit
  • Other: ScienceDirect-Full Text PDF
    Exit
  • Journal Article Su J-Y, Goel R, Burian S, Hinners SJ, Kochanski A, Strong C, et al. Water Quality Trading Framework with Uncertainty for River Systems Due to Climate and Population Characteristics. Water. 2021;13(13). R835866 (2020)
  • Full-text: MDPI Full Text HTML
    Exit
  • Abstract: UA Abstract HTML
    Exit
  • Journal Article SU JY, Barber ME, MAhLER RL. Water quality trading:A conceptual framework for incorporating ancillary benefits. International Journal of Sustainable Development and Planning 2019;14(4):307-18. R835866 (2019)
    R835866 (2020)
  • Abstract: WITpress - Abstract HTML
    Exit
  • Journal Article Li H, Hollstein M, Podder A, Gupta V, Barber M, Goel R. Cyanotoxin impact on microbial-mediated nitrogen transformations at the interface of sediment-water column in surface water bodies. Environmental Pollution 2020;266:115283. R835866 (2020)
  • Full-text: Science Direct- Full Text HTML
    Exit
  • Abstract: PubMed- Abstract HTML
  • Journal Article Hasan MM, Burian SJ, Barber ME. Determining the impacts of wildfires on peak flood flows in high mountain watersheds. International Journal of Environmental Impacts 2020;3(4):339-51. R835866 (2020)
  • Full-text: Research Gate- Full Text PDF
    Exit
  • Abstract: WIT Press- Abstract HTML
    Exit
  • Journal Article Li H, Barber M, Lu J, Goel R. Microbial community successions and their dynamic functions during harmful cyanobacterial blooms in a freshwater lake. Water Research 2020;185:116292. R835866 (2020)
  • Full-text: Science Direct- Full Text HTML
    Exit
  • Abstract: PubMed- Abstract HTML
  • Journal Article Hasan MM, Strong C, Kochanski AK, Burian SJ, Barber ME. Validating Dynamically Downscaled Climate Projections for Mountainous Watersheds Using Historical Runoff Data Coupled with the Distributed Hydrologic Soil Vegetation Model (DHSVM). Water 2020;12(5):1389. R835866 (2020)
  • Full-text: MDPI- Full Text HTML
    Exit
  • Abstract: MDPI- Abstract HTML
    Exit
  • Progress and Final Reports:

    Original Abstract
  • 2016 Progress Report
  • 2017 Progress Report
  • 2018 Progress Report
  • 2019 Progress Report
  • Final Report
  • Top of Page

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Conclusions drawn by the principal investigators have not been reviewed by the Agency.

    Project Research Results

    • Final Report
    • 2019 Progress Report
    • 2018 Progress Report
    • 2017 Progress Report
    • 2016 Progress Report
    • Original Abstract
    27 publications for this project
    10 journal articles for this project

    Site Navigation

    • Grantee Research Project Results Home
    • Grantee Research Project Results Basic Search
    • Grantee Research Project Results Advanced Search
    • Grantee Research Project Results Fielded Search
    • Publication search
    • EPA Regional Search

    Related Information

    • Search Help
    • About our data collection
    • Research Grants
    • P3: Student Design Competition
    • Research Fellowships
    • Small Business Innovation Research (SBIR)
    Contact Us to ask a question, provide feedback, or report a problem.
    Last updated April 28, 2023
    United States Environmental Protection Agency

    Discover.

    • Accessibility
    • Budget & Performance
    • Contracting
    • EPA www Web Snapshot
    • Grants
    • No FEAR Act Data
    • Plain Writing
    • Privacy
    • Privacy and Security Notice

    Connect.

    • Data.gov
    • Inspector General
    • Jobs
    • Newsroom
    • Open Government
    • Regulations.gov
    • Subscribe
    • USA.gov
    • White House

    Ask.

    • Contact EPA
    • EPA Disclaimers
    • Hotlines
    • FOIA Requests
    • Frequent Questions

    Follow.