Skip to main content
U.S. flag

An official website of the United States government

Here’s how you know

Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

HTTPS

Secure .gov websites use HTTPS
A lock (LockA locked padlock) or https:// means you have safely connected to the .gov website. Share sensitive information only on official, secure websites.

  • Environmental Topics
  • Laws & Regulations
  • Report a Violation
  • About EPA
Contact Us

Grantee Research Project Results

Bioavailability of Haloacetates in Human Subjects

EPA Grant Number: R828044
Title: Bioavailability of Haloacetates in Human Subjects
Investigators: Schultz, Irvin R. , Bull, Richard J. , Shangraw, Robert , Poet, Torka
Current Investigators: Schultz, Irvin R. , Shangraw, Robert
Institution: Pacific Northwest National Laboratory
Current Institution: Pacific Northwest National Laboratory , Oregon Health & Sciences University
EPA Project Officer: Hahn, Intaek
Project Period: September 30, 2000 through September 29, 2003 (Extended to April 1, 2005)
Project Amount: $524,928
RFA: Drinking Water (1999) RFA Text |  Recipients Lists
Research Category: Drinking Water , Water

Description:

The objective of this project is to characterize the absorption, disposition and oral bioavailability of chlorinated and brominated haloacetates in human volunteers after consumption of drinking water containing a natural mixture of these compounds. We hypothesize that accurate assessment of the oral bioavailability of haloacetates can be achieved by the simultaneous administration of an oral dose of 12C-labeled haloacetate with an intravenous dose of 13C-labeled haloacetate. We hypothesize that measurable plasma levels of dichloroacetate, bromochloroacetate and dibromoacetate can be detected from the de-bromination of bromo-dichloroacetate, dibromo-chloroacetate and tribromoacetate. We will directly test the hypothesis that prolonged exposure to low concentrations of di-haloacetates reduces their metabolism and increases their systemic bioavailability in humans. These experimental results will be used to validate a physiologically based pharmacokinetic (PBPK) model for haloacetates in humans, which is currently based on in-vitro metabolism parameters obtained with human tissue homogenates.

Approach:

Dichloroacetate (2 mg-haloacetate /Kg) will be given to volunteers within a pint of water. After 5 minutes, 13C-labeled dichloroacetate will be given by intravenous injection (via a catheter placed in the arm). A similar experiment will be performed using mixtures of chlorinated and brominated haloacetates in rhesus monkeys. In a second experiment, volunteers will consume a pint of tap water previously verified to contain the seven haloacetates of interest. For all experiments, serial blood samples will be removed using the intravenous catheter and the blood plasma analyzed simultaneously for both the 13C- and 12C haloacetates (using GC-MS or LC-MS/MS techniques). The area-under-the-curve ratio for the oral and intravenous doses will be determined to estimate the oral bioavailability.

Expected Results:

This project will provide critical data needed to make accurate and reliable exposure estimates of haloacetates to humans consuming municipal drinking water supplies. This project will identify the consequences of low level exposure to haloacetates on their subsequent metabolism and disposition. This information is needed to assess whether individuals who consume water containing high levels of by-products experience greater than predicted exposure due to decreased elimination of haloacetates. This project will also allow for the direct testing of physiologically based pharmacokinetic model predictions of haloacetate dosimetry in humans. The increased understanding of haloacetate pharmacokinetics obtained in this study will allow for improvements in PBPK modeling accuracy, thus providing credible, scientifically defensible measures of effective dose estimates of haloacetates to humans.

Publications and Presentations:

Publications have been submitted on this project: View all 13 publications for this project

Journal Articles:

Journal Articles have been submitted on this project: View all 3 journal articles for this project

Supplemental Keywords:

stable isotope, simultaneous bioavailability, renal elimination,, RFA, Scientific Discipline, Health, PHYSICAL ASPECTS, Toxics, Water, Waste, Ecosystem Protection/Environmental Exposure & Risk, Bioavailability, National Recommended Water Quality, Toxicology, Health Risk Assessment, Fate & Transport, Risk Assessments, Monitoring/Modeling, Environmental Monitoring, Disease & Cumulative Effects, Physical Processes, Drinking Water, Biology, monitoring, health effects, risk assessment, haloacetates, exposure and effects, DBPs , stable isotope, physiologically based pharmacokinetic model, renal eliminatio, disinfection byproducts (DPBs), dose response, dose-response, exposure, pharmacokinetics, cellular physiology, chlorinated DBPs, treatment, brominated DPBs, PBPK modeling, human exposure, metabolism, PBPK, absorption, elimination, microbial exposure, water quality, dose estimates, DBPs, drinking water contaminants, DBP exposure, exposure assessment, human health risk, dosimetry

Progress and Final Reports:

  • 2001 Progress Report
  • 2002 Progress Report
  • 2003 Progress Report
  • 2004
  • Final Report
  • Top of Page

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Conclusions drawn by the principal investigators have not been reviewed by the Agency.

    Project Research Results

    • Final Report
    • 2004
    • 2003 Progress Report
    • 2002 Progress Report
    • 2001 Progress Report
    13 publications for this project
    3 journal articles for this project

    Site Navigation

    • Grantee Research Project Results Home
    • Grantee Research Project Results Basic Search
    • Grantee Research Project Results Advanced Search
    • Grantee Research Project Results Fielded Search
    • Publication search
    • EPA Regional Search

    Related Information

    • Search Help
    • About our data collection
    • Research Grants
    • P3: Student Design Competition
    • Research Fellowships
    • Small Business Innovation Research (SBIR)
    Contact Us to ask a question, provide feedback, or report a problem.
    Last updated April 28, 2023
    United States Environmental Protection Agency

    Discover.

    • Accessibility
    • Budget & Performance
    • Contracting
    • EPA www Web Snapshot
    • Grants
    • No FEAR Act Data
    • Plain Writing
    • Privacy
    • Privacy and Security Notice

    Connect.

    • Data.gov
    • Inspector General
    • Jobs
    • Newsroom
    • Open Government
    • Regulations.gov
    • Subscribe
    • USA.gov
    • White House

    Ask.

    • Contact EPA
    • EPA Disclaimers
    • Hotlines
    • FOIA Requests
    • Frequent Questions

    Follow.