Skip to main content
U.S. flag

An official website of the United States government

Here’s how you know

Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

HTTPS

Secure .gov websites use HTTPS
A lock (LockA locked padlock) or https:// means you have safely connected to the .gov website. Share sensitive information only on official, secure websites.

  • Environmental Topics
  • Laws & Regulations
  • Report a Violation
  • About EPA
Contact Us

Grantee Research Project Results

2013 Progress Report: Investigating the Effects Of Atmospheric Aging on the Radiative Properties and Climate Impacts of Black Carbon Aerosol

EPA Grant Number: R835033
Title: Investigating the Effects Of Atmospheric Aging on the Radiative Properties and Climate Impacts of Black Carbon Aerosol
Investigators: Kroll, Jesse H. , Heald, Colette L. , Davidovits, Paul
Institution: Massachusetts Institute of Technology , Boston College
EPA Project Officer: Chung, Serena
Project Period: May 1, 2012 through April 30, 2015 (Extended to April 30, 2016)
Project Period Covered by this Report: May 1, 2013 through April 30,2014
Project Amount: $899,654
RFA: Black Carbon's Role In Global To Local Scale Climate And Air Quality (2010) RFA Text |  Recipients Lists
Research Category: Air , Climate Change

Objective:

Black carbon (BC) particles play a significant role in climate forcing, yet the effects of aging – atmospheric processes that affect the mass, size, shape, and chemical composition of aerosol particles – on their radiative properties are poorly constrained. This combined laboratory and modeling study will provide new insights into the detailed effects of atmospheric aging on the climate impacts of black carbon particles.

Progress Summary:

In Year 2 of this project we continued our work on BC heterogeneous aging, examining in detail the kinetics of such processes, plus the changes to chemical composition and water-uptake properties of the particles upon aging. Results indicate that heterogeneous oxidation is a rapid enough process to compete with other aging mechanisms (condensation, coagulation), but also that changes to water-uptake properties are likely dominated by condensation processes. We have also carried out the first study of the aging of BrC particles, finding that their chemical composition changes dramatically after the equivalent of a few days of oxidation, and more importantly that oxidation appears to degrade their light-absorbing properties. Additional experimental work has focused on measurements of the mass spectra and morphologies of BCcontaining particles from various sources. Modeling work has focused on improving the simulation of BC in a global model (GEOS-Chem) and developing an accompanying simulation of BrC. We updated the properties and aging mechanism for BC particles in the model and found that the short BC lifetime is critical to capturing more remote measurements. Our estimate of the direct radiative forcing of BC is considerably lower that the most recent estimate from the IPCC. We attribute this difference to previous overestimates of the BC lifetime as well as a misattribution of BrC absorption to BC.

Future Activities:

In Year 3 of this project, laboratory experiments will focus on measurements of changes to optical properties of BC (and BrC) upon oxidative and condensational aging, and parameterization of these changes for use in global models. Future modeling work will include efforts to further develop our simulation of BrC based on observational constraints, as well as further investigation of the impacts of aging, as represented by the laboratory experiments, on the global burden and forcing from BC.


Journal Articles on this Report : 2 Displayed | Download in RIS Format

Publications Views
Other project views: All 28 publications 12 publications in selected types All 12 journal articles
Publications
Type Citation Project Document Sources
Journal Article Heald CL, Ridley DA, Kroll JH, Barrett SRH, Cady-Pereira KE, Alvarado MJ, Holmes CD. Contrasting the direct radiative effect and direct radiative forcing of aerosols. Atmospheric Chemistry and Physics 2014;14(11):5513-5527. R835033 (2013)
R835033 (2014)
R835033 (Final)
  • Full-text: ACP-Full Text PDF
    Exit
  • Abstract: ACP-Abstract
    Exit
  • Other: ResearchGate-Full Text PDF
    Exit
  • Journal Article Lambe AT, Cappa CD, Massoli P, Onasch TB, Forestieri SD, Martin AT, Cummings MJ, Croasdale DR, Brune WH, Worsnop DR, Davidovits P. Relationship between oxidation level and optical properties of secondary organic aerosol. Environmental Science & Technology 2013;47(12):6349-6357. R835033 (2012)
    R835033 (2013)
    R835033 (2014)
    R835033 (Final)
  • Abstract from PubMed
  • Full-text: ACPD-Full Text PDF
    Exit
  • Abstract: ACS-Abstract
    Exit
  • Other: ACS-Full Text PDF
    Exit
  • Supplemental Keywords:

    black carbon, aerosol, light-absorbing carbon, brown carbon, direct radiative effects, climate, global modeling, optical properties, atmospheric aging

    Progress and Final Reports:

    Original Abstract
  • 2012 Progress Report
  • 2014 Progress Report
  • Final Report
  • Top of Page

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Conclusions drawn by the principal investigators have not been reviewed by the Agency.

    Project Research Results

    • Final Report
    • 2014 Progress Report
    • 2012 Progress Report
    • Original Abstract
    28 publications for this project
    12 journal articles for this project

    Site Navigation

    • Grantee Research Project Results Home
    • Grantee Research Project Results Basic Search
    • Grantee Research Project Results Advanced Search
    • Grantee Research Project Results Fielded Search
    • Publication search
    • EPA Regional Search

    Related Information

    • Search Help
    • About our data collection
    • Research Grants
    • P3: Student Design Competition
    • Research Fellowships
    • Small Business Innovation Research (SBIR)
    Contact Us to ask a question, provide feedback, or report a problem.
    Last updated April 28, 2023
    United States Environmental Protection Agency

    Discover.

    • Accessibility
    • Budget & Performance
    • Contracting
    • EPA www Web Snapshot
    • Grants
    • No FEAR Act Data
    • Plain Writing
    • Privacy
    • Privacy and Security Notice

    Connect.

    • Data.gov
    • Inspector General
    • Jobs
    • Newsroom
    • Open Government
    • Regulations.gov
    • Subscribe
    • USA.gov
    • White House

    Ask.

    • Contact EPA
    • EPA Disclaimers
    • Hotlines
    • FOIA Requests
    • Frequent Questions

    Follow.