Skip to main content
U.S. flag

An official website of the United States government

Here’s how you know

Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

HTTPS

Secure .gov websites use HTTPS
A lock (LockA locked padlock) or https:// means you have safely connected to the .gov website. Share sensitive information only on official, secure websites.

  • Environmental Topics
  • Laws & Regulations
  • Report a Violation
  • About EPA
Contact Us

Grantee Research Project Results

Using Waste to Clean Up the Environment: Cellulosic Ethanol, the Future of Fuels

EPA Grant Number: SU834325
Title: Using Waste to Clean Up the Environment: Cellulosic Ethanol, the Future of Fuels
Investigators: Garong, Ramon Joshua , Turgman, Anthony , Kwon, Christine , Shi, Jian , Tam, Kawai , Nguyen, Vu
Current Investigators: Wyman, Charles , Garong, Ramon Joshua , Turgman, Anthony , Kwon, Christine , Shi, Jian , Tam, Kawai , Nguyen, Vu
Institution: University of California - Riverside
EPA Project Officer: Page, Angela
Phase: I
Project Period: August 15, 2009 through August 14, 2010
Project Amount: $10,000
RFA: P3 Awards: A National Student Design Competition for Sustainability Focusing on People, Prosperity and the Planet (2009) RFA Text |  Recipients Lists
Research Category: P3 Challenge Area - Chemical Safety , P3 Awards , Sustainable and Healthy Communities , Pollution Prevention/Sustainable Development

Objective:

The objective in converting waste, particularly alternative daily cover green (ADC Green), into ethanol is to achieve a maximum yield of glucose and ethanol from this waste stream, a continuous waste stream found in waste facilities across the United States. Increasing the glucose yield will facilitate the transition from lab scale in to a full scale process. The ultimate goal will be to provide sufficient data that prove this process can be used in an industrial setting for mass consumption within the United States

Approach:

To achieve the maximum yield of glucose from ADC green, we will conduct a three phase experiment. The first phase will explore the different variables associated with the pretreatment process; specifically, the amount of time and temperature the substrate will endure during pretreatment will be explored. The second phase is hydrolysis which will consist of hydrolyzing the solid pretreated substrate via the addition of enzymes, and characterizing hydrolysis by varying bovine serum albumin (BSA, enzyme inhibitor) loading. The liquid solution, consisting of simple sugars extracted from hydrolysis, will then be analyzed for composition as well as percent yield, and then transferred into phase three. During the third and final phase, fermentation will process the simple sugars into ethanol. Moreover, in lieu of conducting fermentation in the laboratory, we will use theoretical and previously calculated data to estimate our process yield (glucose to ethanol conversion).

Expected Results:

Results will be obtained from data gathered by conducting the aforementioned experiments in the College of Engineering-Center for Environmental Research and Technology, under the supervision and guidance of Dr. Bin Yang. Ideal pretreatment conditions must be discovered and applied in order to optimize each process parameter. During pretreatment we anticipate an approximate glucan yield of 40% after the pretreated substrate has been extracted and the liquid solution analyzed. Transferring the pretreated solid substrate into enzymatic hydrolysis we anticipate an 80% conversion of existing complex sugars into simple sugars, leaving ± 20% for refining the enzyme and BSA loading. Finally, for fermentation, we anticipate theoretical calculations to achieve 100% efficiency meaning, all sugars will be converted into ethanol.

Supplemental Keywords:

materials and chemicals, bio-based feed stocks, green energy, toxics, solvents, organics, pollution prevention, alternative energy source, renewable energy, sustainable development, clean technologies, waste to value, innovative technology, renewable, waste minimization, public good, adsorption, transportation, built environment,

Progress and Final Reports:

  • Final Report
  • Top of Page

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Conclusions drawn by the principal investigators have not been reviewed by the Agency.

    Project Research Results

    • Final Report

    Site Navigation

    • Grantee Research Project Results Home
    • Grantee Research Project Results Basic Search
    • Grantee Research Project Results Advanced Search
    • Grantee Research Project Results Fielded Search
    • Publication search
    • EPA Regional Search

    Related Information

    • Search Help
    • About our data collection
    • Research Grants
    • P3: Student Design Competition
    • Research Fellowships
    • Small Business Innovation Research (SBIR)
    Contact Us to ask a question, provide feedback, or report a problem.
    Last updated April 28, 2023
    United States Environmental Protection Agency

    Discover.

    • Accessibility
    • Budget & Performance
    • Contracting
    • EPA www Web Snapshot
    • Grants
    • No FEAR Act Data
    • Plain Writing
    • Privacy
    • Privacy and Security Notice

    Connect.

    • Data.gov
    • Inspector General
    • Jobs
    • Newsroom
    • Open Government
    • Regulations.gov
    • Subscribe
    • USA.gov
    • White House

    Ask.

    • Contact EPA
    • EPA Disclaimers
    • Hotlines
    • FOIA Requests
    • Frequent Questions

    Follow.