Skip to main content
U.S. flag

An official website of the United States government

Here’s how you know

Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

HTTPS

Secure .gov websites use HTTPS
A lock (LockA locked padlock) or https:// means you have safely connected to the .gov website. Share sensitive information only on official, secure websites.

  • Environmental Topics
  • Laws & Regulations
  • Report a Violation
  • About EPA
Contact Us

Grantee Research Project Results

Allocation of Biomass Derived Products for Optimal Economic and Environmental Performance

EPA Grant Number: F6A10603
Title: Allocation of Biomass Derived Products for Optimal Economic and Environmental Performance
Investigators: Sammons, Norman Edward
Institution: Auburn University Main Campus
EPA Project Officer: Packard, Benjamin H
Project Period: September 1, 2006 through September 1, 2009
Project Amount: $111,172
RFA: STAR Graduate Fellowships (2006) RFA Text |  Recipients Lists
Research Category: Academic Fellowships , Environmental Justice , Fellowship - Chemical Engineering

Objective:

The research project involves developing a framework to help decision makers in determining the optimal processing routes in the field of biorefining, which is the conversion of various forms of biomass into high-value final products. The vast range of possible products from biorefining results in a high level of complexity and a need for a systematic approach to formulate a production strategy needed to maximize value while minimizing environmental impact. The framework will determine the products and amounts needed to attain optimal economic performance as well as level of environmental impact for profitable production routes using the EPA WAR algorithm.

The objective of this work is to develop a flexible decision making framework for the allocation of biomass into value-added products through the use of a holistic problem solving approach.

Approach:

First, a superstructure will be constructed to illustrate all possible process routes in the field of biorefining. Next, literature for the process routes will be reviewed in order to determine processing cost, yield, and amounts and types of releases into the environment. If literature does not reveal the needed information, process simulators and economic tools will be used in order to approximate the necessary data. Process integration will then be used to maximize resource utilization while ensuring sustainable production. Once the process routes are all optimized through process integration, data on cost, yield, and outputs for each path of the superstructure will be incorporated into a mathematical solver that will use linear programming optimization to determine the most profitable processing routes. Through the use of the EPA WAR algorithm, relative environmental impact will then be determined separately for the economically optimal routes to assist the end user in making the decision on which production route to follow in order to maximize value while minimizing environmental impact.

Expected Results:

The end result is a superstructure that contains all possible routes in biorefining, a library of simulation models and information relevant to each possible route, and an optimization program capable of determining the most optimal production routes and corresponding environmental impact levels while using acceptable computing power. Data on overall production cost, yield, and environmental releases is determined from process simulators and/or available literature, and linear approximations of relevant data is then incorporated into the mathematical solver. By keeping the nonlinear process simulations separate from the optimization program, the linearized problem becomes much more simplified. The flexibility of this framework will also allow for technological breakthroughs to be incorporated by developing a process simulation for the new technology, and entering the new data into the framework.

Supplemental Keywords:

Integrated biorefineries, sustainability, optimization, framework, biomass,, RFA, Scientific Discipline, Economic, Social, & Behavioral Science Research Program, Economics, decision-making, Ecology and Ecosystems, Economics & Decision Making, model-based analysis, biofuel policy, economic research, decision making, economic benefits, cost benefit, decision support tool

Progress and Final Reports:

  • 2007
  • 2008
  • Final
  • Top of Page

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Conclusions drawn by the principal investigators have not been reviewed by the Agency.

    Site Navigation

    • Grantee Research Project Results Home
    • Grantee Research Project Results Basic Search
    • Grantee Research Project Results Advanced Search
    • Grantee Research Project Results Fielded Search
    • Publication search
    • EPA Regional Search

    Related Information

    • Search Help
    • About our data collection
    • Research Grants
    • P3: Student Design Competition
    • Research Fellowships
    • Small Business Innovation Research (SBIR)
    Contact Us to ask a question, provide feedback, or report a problem.
    Last updated April 28, 2023
    United States Environmental Protection Agency

    Discover.

    • Accessibility
    • Budget & Performance
    • Contracting
    • EPA www Web Snapshot
    • Grants
    • No FEAR Act Data
    • Plain Writing
    • Privacy
    • Privacy and Security Notice

    Connect.

    • Data.gov
    • Inspector General
    • Jobs
    • Newsroom
    • Open Government
    • Regulations.gov
    • Subscribe
    • USA.gov
    • White House

    Ask.

    • Contact EPA
    • EPA Disclaimers
    • Hotlines
    • FOIA Requests
    • Frequent Questions

    Follow.