Skip to main content
U.S. flag

An official website of the United States government

Here’s how you know

Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

HTTPS

Secure .gov websites use HTTPS
A lock (LockA locked padlock) or https:// means you have safely connected to the .gov website. Share sensitive information only on official, secure websites.

  • Environmental Topics
  • Laws & Regulations
  • Report a Violation
  • About EPA
Contact Us

Grantee Research Project Results

2004 Progress Report: Advanced Nanosensors for Continuous Monitoring of Heavy Metals

EPA Grant Number: R830906
Title: Advanced Nanosensors for Continuous Monitoring of Heavy Metals
Investigators: Sadik, Omowunmi , Mulchandani, Ashok , Wang, Joseph
Institution: The State University of New York at Binghamton , University of California - Riverside , New Mexico State University - Main Campus
Current Institution: The State University of New York at Binghamton , New Mexico State University - Main Campus , University of California - Riverside
EPA Project Officer: Hahn, Intaek
Project Period: May 19, 2003 through April 18, 2006
Project Period Covered by this Report: May 19, 2004 through April 18, 2005
Project Amount: $351,000
RFA: Environmental Futures Research in Nanoscale Science Engineering and Technology (2002) RFA Text |  Recipients Lists
Research Category: Nanotechnology , Safer Chemicals

Objective:

The overall objective of this work is to incorporate novel, colloidal-metal nanoparticles into a bed of electrically conducting polymers and use these to develop nanosensors. We also seek to explore the feasibility of designing advanced conducting polymeric materials for remediation applications.

Progress Summary:

During Year 1 of the project, we reported new synthetic approaches for polyamic acid-silver nanoparticle composite membranes, polyoxydianiline films and electrochemical deposition of gold nanoparticle films onto functionalized conducting polymer substrates. We used the unique reactivity of polyamic acid (PAA) to design polymer-assisted nanostructured materials by preventing the cyclization of the reactive soluble intermediate into polyimides at low temperatures. The ability to prevent the cyclization process enabled the design of a new class of electrode materials using thermal reduction and/or electrodeposition. During this reporting period, we selected one of the synthetic nanostructured materials reported in Year 1, and tested this as an environmental catalyst for the conversion of higher valent to low valent Cr in soil and water samples.

The application of the Pd nanoparticles-sulfur mixture was tested using actual soil samples, resulting in more than 92 percent conversion in the presence of Pd-NPs/S within 1 hour. In contrast, only 33 percent of the same concentration was converted to Cr (III) in the absence of Pd-NPs/S. This represents a greater than 500-fold improvement in conversion rate compared to current microbial approaches. This work offers a new application of nanotechnology for the reduction of high oxidation state heavy metal pollutants. In addition, the bismuth electrode-cupferon complex has been tested for the detection of uranium using anodic stripping voltammetry. A detection limit of 0.3 μg/L is observed in connection to a 10 min adsorption time. The response is linear up to 50 μg/L and the relative standard deviation at 50 μg/L uranium is 3.8%(n=15, 2 minute adsorption). This detection limit meets the requirements of monitoring contaminated sites and most water quality applications.

Applicability to seawater samples is has also been demonstrated and the resulting behavior of the new “mercury-free” uranium sensor holds great promise for on-site environmental and industrial monitoring of uranium It implies that the response observed for real sample is lower than that recorded for synthetic samples, thus the method is analytically useful.

Future Activities:

Our next goal is to optimize our approach for the environmental remediation of Cr (VI) by building a reactor. The reactor design will be completed and tested for the conversion of Cr (Vi) to Cr (III) in different soil environments. Parameters to be optimized include types of soil, porosity, and amount of Pd-NPs, time, temperature and pH. In addition, we will conduct a simultaneous characterization and optimization of the polymers for metal detection and speciation at the State University of New York and Arizona State University.


Journal Articles on this Report : 5 Displayed | Download in RIS Format

Publications Views
Other project views: All 39 publications 14 publications in selected types All 10 journal articles
Publications
Type Citation Project Document Sources
Journal Article Andreescu D, Wanekaya A, Sadik OA, Wang J. Nanostructured polyamic acid membranes as novel electrode materials. Langmuir 2005;21(15):6891-6899. R830906 (2003)
R830906 (2004)
R830906 (Final)
  • Abstract from PubMed
  • Abstract: ACS Publications - abstract
    Exit
  • Journal Article Andreescu D, Sadik OA. Synthesis of polyoxydianiline membranes onto gold electrodes. Journal of the Electrochemical Society 2005;152(10):E299-E307. R830906 (2004)
    R830906 (Final)
    not available
    Journal Article Andreescu S, Sadik OA. Correlation of analyte structures with biosensor responses using the detection of phenolic estrogens as a model. Analytical Chemistry 2004;76(3):552-560. R830906 (2004)
    R830906 (Final)
    not available
    Journal Article K’Owino IO, Omole MA, Sadik OA. Tuning the surfaces of palladium nanoparticles for the catalytic conversion of Cr(VI) to Cr(III). Journal of Environmental Monitoring 2007;9(7):657-665. R830906 (2004)
    R830906 (Final)
  • Abstract from PubMed
  • Journal Article Lin L, Thongngamdee S, Wang J, Lin Y, Sadik OA, Ly S-Y. Adsorptive stripping voltammetric measurements of trace uranium at the bismuth film electrode. Analytica Chimica Acta 2005;535(1-2):9-13. R830906 (2004)
    R830906 (Final)
    not available

    Supplemental Keywords:

    nanomaterials, nanotechnology, environmental application, metal analysis, remediation, innovative technology, heavy metals, environmental chemistry, nanoscale sensors,, Sustainable Industry/Business, RFA, Ecosystem Protection/Environmental Exposure & Risk, Scientific Discipline, INTERNATIONAL COOPERATION, Water, POLLUTANTS/TOXICS, Environmental Chemistry, Engineering, Chemistry, & Physics, Monitoring/Modeling, Arsenic, Chemicals, Drinking Water, New/Innovative technologies, Environmental Engineering, Environmental Monitoring, Water Pollutants, heavy metals, health effects, electrically conducting polymers, colloidal metal nanoparticles, water quality, environmental measurement, carbon nanotubes, analytical methods, monitoring, nanoengineering, nanotechnology, micro electromechanical system, nanosensors, drinking water contaminants, nanocrystals, nanocontact sensor, organic gas sensor

    Relevant Websites:

    http://chemistry.binghamton.edu/SADIK/sadik.htm Exit

    Progress and Final Reports:

    Original Abstract
  • 2003 Progress Report
  • Final Report
  • Top of Page

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Conclusions drawn by the principal investigators have not been reviewed by the Agency.

    Project Research Results

    • Final Report
    • 2003 Progress Report
    • Original Abstract
    39 publications for this project
    10 journal articles for this project

    Site Navigation

    • Grantee Research Project Results Home
    • Grantee Research Project Results Basic Search
    • Grantee Research Project Results Advanced Search
    • Grantee Research Project Results Fielded Search
    • Publication search
    • EPA Regional Search

    Related Information

    • Search Help
    • About our data collection
    • Research Grants
    • P3: Student Design Competition
    • Research Fellowships
    • Small Business Innovation Research (SBIR)
    Contact Us to ask a question, provide feedback, or report a problem.
    Last updated April 28, 2023
    United States Environmental Protection Agency

    Discover.

    • Accessibility
    • Budget & Performance
    • Contracting
    • EPA www Web Snapshot
    • Grants
    • No FEAR Act Data
    • Plain Writing
    • Privacy
    • Privacy and Security Notice

    Connect.

    • Data.gov
    • Inspector General
    • Jobs
    • Newsroom
    • Open Government
    • Regulations.gov
    • Subscribe
    • USA.gov
    • White House

    Ask.

    • Contact EPA
    • EPA Disclaimers
    • Hotlines
    • FOIA Requests
    • Frequent Questions

    Follow.