Skip to main content
U.S. flag

An official website of the United States government

Here’s how you know

Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

HTTPS

Secure .gov websites use HTTPS
A lock (LockA locked padlock) or https:// means you have safely connected to the .gov website. Share sensitive information only on official, secure websites.

  • Environmental Topics
  • Laws & Regulations
  • Report a Violation
  • About EPA
Contact Us

Grantee Research Project Results

Environment and Community-Friendly Wastewater Treatment

EPA Grant Number: SV839486
Title: Environment and Community-Friendly Wastewater Treatment
Investigators: Richardson, Ruth E.
Institution: Cornell University
EPA Project Officer: Page, Angela
Phase: II
Project Period: April 1, 2019 through March 31, 2021 (Extended to March 31, 2023)
Project Amount: $75,000
RFA: P3 Awards: A National Student Design Competition for Sustainability Focusing on People, Prosperity and the Planet - Phase 2 (2019) Recipients Lists
Research Category: P3 Awards , P3 Challenge Area - Safe and Sustainable Water Resources

Objective:

AguaClara Cornell researched a variety of bioreactor types and selected the Upflow Anaerobic Sludge Blanket (UASB) bioreactor as the most promising core technology for a distributed wastewater treatment system for small communities. The UASB was chosen because of its: (1) efficiency for organics removal, (2) low cost, (3) simplicity of design, and (4) the fact that there is a value added product (biogas for cooking, lighting, heating) that could motivate adoption of the technology. UASB reactors treat wastewater biologically, using anaerobic bacteria to break down organic matter and converting the majority of it to biogas. Methane comprises 60-70% of the resulting biogas content, and can be used as fuel for heating, lighting, or cooking. However, getting UASB designs to work robustly without electricity and at very small scales (a few households to dozens of households) is a challenge not yet well addressed by existing designs. Though large scale centralized UASB systems, such as those installed in Brazil and India, often include pumping and electronic controls, they can be designed as gravity powered systems which are much more attractive to small communities with unreliable electricity access.

We hypothesize that:

1.UASBs can be operated without electricity if designed appropriately to use gravity head to distribute influent wastewater.

2. A UASB that is treating waste for about 15 people will be able to provide cooking fuel for one household.

3.We hypothesize that UASB inlet system design (fluid velocities, manifold design, and flow intermittency) has a significant effect on the hydraulic residence time and treatment efficiency in the sludge bed.

4.We hypothesize that solid/liquid separation would be improved if it were accomplished in a zone that was free of gas bubbles.

5. We hypothesize that Fats/Oils/Grease, FOG, can be removed with a surface drain.

Approach:

The hypothesis related to improve the hydraulic residence time by reducing short circuiting provides a significant opportunity for improving UASB performance. This hypothesis will be tested initially in scale models in transparent reactors and using a tracer and simulated settled sludge beds to measure the tracer residence time of different designs. After characterization of the failure modes and dominant length scales we will first demonstrate a successful design at bench scale and then design and build pilot scale reactors.

Pilot plants will be tested and their performance compared at the Ithaca Area Wastewater Treatment Facility (IAWWTF). (IAWWTF) staff and lab workers will monitor performance and recommend design improvements. An improved design will be tested in a Honduran community in collaboration with the Honduran Water Ministry and Agua Para el Pueblo. Data collected will provide crucial insight into how these systems work in community settings, and will inform final design decisions before implementation of these reactors in communities on a larger scale.

Expected Results:

Goal #1: Improving the influent dosing system, reducing short circuiting, and improving the removal of floatables (UASB 2.0 design)

Goal #2: Characterizing startup and performance of the UASB reactors with these innovation.

Goal #3: Determining appropriate options for effluent post treatment and biogas utilization

Goal #4: Iterating designs and installing and testing a distributed UASB in Honduras

The proposed work is designed to meet the need for a higher performing and lower cost wastewater treatment system. We will build on our open source approach that we have used to create the next generation of drinking water treatment technologies. Our expertise in linking user feedback, advanced reactor design, and context specific construction methods will enable us to create innovative and useful solutions.

Publications and Presentations:

Publications have been submitted on this project: View all 14 publications for this project

Supplemental Keywords:

Biogas, UASB, sustainable development, pathogens, watersheds, aquatic ecosystem, waste reduction

Progress and Final Reports:

  • 2019 Progress Report
  • 2020 Progress Report
  • 2021 Progress Report
  • Final Report

  • P3 Phase I:

    Climate & Community Friendly Wastewater Treatment  | 2018 Progress Report  | Final Report

    Top of Page

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Conclusions drawn by the principal investigators have not been reviewed by the Agency.

    Project Research Results

    • Final Report
    • 2021 Progress Report
    • 2020 Progress Report
    • 2019 Progress Report
    • P3 Phase I | 2018 Progress Report | Final Report
    14 publications for this project

    Site Navigation

    • Grantee Research Project Results Home
    • Grantee Research Project Results Basic Search
    • Grantee Research Project Results Advanced Search
    • Grantee Research Project Results Fielded Search
    • Publication search
    • EPA Regional Search

    Related Information

    • Search Help
    • About our data collection
    • Research Grants
    • P3: Student Design Competition
    • Research Fellowships
    • Small Business Innovation Research (SBIR)
    Contact Us to ask a question, provide feedback, or report a problem.
    Last updated April 28, 2023
    United States Environmental Protection Agency

    Discover.

    • Accessibility
    • Budget & Performance
    • Contracting
    • EPA www Web Snapshot
    • Grants
    • No FEAR Act Data
    • Plain Writing
    • Privacy
    • Privacy and Security Notice

    Connect.

    • Data.gov
    • Inspector General
    • Jobs
    • Newsroom
    • Open Government
    • Regulations.gov
    • Subscribe
    • USA.gov
    • White House

    Ask.

    • Contact EPA
    • EPA Disclaimers
    • Hotlines
    • FOIA Requests
    • Frequent Questions

    Follow.