Skip to main content
U.S. flag

An official website of the United States government

Here’s how you know

Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

HTTPS

Secure .gov websites use HTTPS
A lock (LockA locked padlock) or https:// means you have safely connected to the .gov website. Share sensitive information only on official, secure websites.

  • Environmental Topics
  • Laws & Regulations
  • Report a Violation
  • About EPA
Contact Us

Grantee Research Project Results

2013 Progress Report: Combining Empirical Orthogonal Function and Extreme Value Theory Methods to Characterize Observed and Future Changes in Extreme U.S. Air Pollution Events

EPA Grant Number: R835206
Title: Combining Empirical Orthogonal Function and Extreme Value Theory Methods to Characterize Observed and Future Changes in Extreme U.S. Air Pollution Events
Investigators: Fiore, Arlene M , Polvani, Lorenzo M
Institution: Columbia University in the City of New York
EPA Project Officer: Chung, Serena
Project Period: June 1, 2012 through May 31, 2015 (Extended to May 31, 2016)
Project Period Covered by this Report: June 1, 2013 through June 1,2014
Project Amount: $749,951
RFA: Extreme Event Impacts on Air Quality and Water Quality with a Changing Global Climate (2011) RFA Text |  Recipients Lists
Research Category: Air Quality and Air Toxics , Water Quality , Climate Change , Air , Water

Objective:

With a suite of observations and models, we will identify and characterize changes in extreme ozone and particulate matter events and their underlying meteorological drivers leading to extreme air pollution events over the past several decades as well as for a variety of future climate and emission scenarios. We will also examine changes in the intensity and duration of extreme precipitation events and extended periods of extreme drought, to provide information on two of the key hazards affecting water quality.

Progress Summary:

With a suite of chemistry-climate simulations, we are quantifying changes in climate and pollution extremes under several global change scenarios. We have characterized changes in extreme surface ozone events over the Eastern United States separately under climate change and combined climate and pollutant emission scenarios. In order to estimate changes in policy-relevant statistics, despite baseline biases in a chemistry-climate model, we have also developed and applied a statistical bias correction at the regional scale. We found that observed surface ozone seasonal cycles over the Northeastern United States are shifting in response to regional precursor emission controls and further examined how they respond to changes in regional precursor emission controls, global methane, and climate change in a chemistry-climate model. We conclude that continued changes in the balance between regional ozone production and background ozone could lead to a reversal of the seasonal cycle in presently polluted regions over the coming decades, thereby altering the baseline upon which extreme ozone pollution events build. We are exploring the role of aerosols versus greenhouse gases in contributing to changes in extreme precipitation and temperature events over the United States and evaluating these forced responses relative to climate variability.

Future Activities:

We will extend our work to other U.S. regions and seasons, and will additionally examine PM2.5 pollution. We are working to advance mechanistic understanding of extreme temperature, precipitation, pollution events and their joint occurrence. To the extent possible, we will examine multiple chemistry-climate models to determine where projected changes are most robust.


Journal Articles on this Report : 2 Displayed | Download in RIS Format

Publications Views
Other project views: All 50 publications 13 publications in selected types All 13 journal articles
Publications
Type Citation Project Document Sources
Journal Article Clifton OE, Fiore AM, Correa G, Horowitz LW, Naik V. Twenty-first century reversal of the surface ozone seasonal cycle over the northeastern United States. Geophysical Research Letters 2014;41(20):7343-7350. R835206 (2013)
R835206 (2014)
R835206 (Final)
  • Full-text: UCAR-Full Text PDF
    Exit
  • Abstract: Wiley Online-Abstract
    Exit
  • Other: Wiley Online-Full Text PDF
    Exit
  • Journal Article Rieder HE, Fiore AM, Horowitz LW, Naik V. Projecting policy-relevant metrics for high summertime ozone pollution events over the eastern United States due to climate and emission changes during the 21st century. Journal of Geophysical Research:Atmospheres 2015;120(2):784-800. R835206 (2013)
    R835206 (2014)
    R835206 (Final)
  • Full-text: Columbia University-Full Text PDF
    Exit
  • Abstract: Wiley Online-Abstract
    Exit
  • Supplemental Keywords:

    Ambient air, global climate, precipitation, sustainable air quality management, sustainable water management, global change, regional climate change, air pollution episodes, ozone, aerosol, modeling, general circulation models, climate models

    Relevant Websites:

    http://www.ldeo.columbia.edu/~amfiore/amf_presentations.html Exit

    Progress and Final Reports:

    Original Abstract
  • 2012 Progress Report
  • 2014 Progress Report
  • Final Report
  • Top of Page

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Conclusions drawn by the principal investigators have not been reviewed by the Agency.

    Project Research Results

    • Final Report
    • 2014 Progress Report
    • 2012 Progress Report
    • Original Abstract
    50 publications for this project
    13 journal articles for this project

    Site Navigation

    • Grantee Research Project Results Home
    • Grantee Research Project Results Basic Search
    • Grantee Research Project Results Advanced Search
    • Grantee Research Project Results Fielded Search
    • Publication search
    • EPA Regional Search

    Related Information

    • Search Help
    • About our data collection
    • Research Grants
    • P3: Student Design Competition
    • Research Fellowships
    • Small Business Innovation Research (SBIR)
    Contact Us to ask a question, provide feedback, or report a problem.
    Last updated April 28, 2023
    United States Environmental Protection Agency

    Discover.

    • Accessibility
    • Budget & Performance
    • Contracting
    • EPA www Web Snapshot
    • Grants
    • No FEAR Act Data
    • Plain Writing
    • Privacy
    • Privacy and Security Notice

    Connect.

    • Data.gov
    • Inspector General
    • Jobs
    • Newsroom
    • Open Government
    • Regulations.gov
    • Subscribe
    • USA.gov
    • White House

    Ask.

    • Contact EPA
    • EPA Disclaimers
    • Hotlines
    • FOIA Requests
    • Frequent Questions

    Follow.