Skip to main content
U.S. flag

An official website of the United States government

Here’s how you know

Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

HTTPS

Secure .gov websites use HTTPS
A lock (LockA locked padlock) or https:// means you have safely connected to the .gov website. Share sensitive information only on official, secure websites.

  • Environmental Topics
  • Laws & Regulations
  • Report a Violation
  • About EPA
Contact Us

Grantee Research Project Results

2001 Progress Report: Zeolite Coatings by In-Situ Crystallization as an Environmentally Benign Alternative to Chromate Conversion and Anodization Coatings

EPA Grant Number: R828134
Title: Zeolite Coatings by In-Situ Crystallization as an Environmentally Benign Alternative to Chromate Conversion and Anodization Coatings
Investigators: Yan, Yushan
Institution: University of California - Riverside
EPA Project Officer: Richards, April
Project Period: August 1, 2000 through July 31, 2003 (Extended to July 31, 2004)
Project Period Covered by this Report: August 1, 2000 through July 31, 2001
Project Amount: $250,316
RFA: Technology for a Sustainable Environment (1999) RFA Text |  Recipients Lists
Research Category: Nanotechnology , Pollution Prevention/Sustainable Development , Sustainable and Healthy Communities

Objective:

The objective of this proposed project is to develop a chromium-free zeolite coating that has comparable thickness to chromate conversion and anodization coatings and equivalent or superior performance in coating adhesion, corrosion protection, abrasion resistance, and paint adhesion. An intrinsically inexpensive, safe, and nonpolluting in-situ crystallization process that is capable of coating large surfaces with complex shapes and in confined spaces also will be developed. Zeolites are microporous crystalline silicate materials and have widely been exploited for their microporosity (< 15?) as catalysts and separation media. However, many high silica zeolites are nonporous in their as-synthesized state because of the organic molecules occluded in their pores during crystallization. High silica zeolites also are known for their thermal and chemical stability and high mechanical strength. The goal of this project is to explore these dense polycrystalline high silica or pure silica zeolite films in their as-synthesized state for corrosion protection.

Progress Summary:

We have demonstrated that high silica zeolite ZSM-5 coatings on aluminum alloys and steel are extremely corrosion resistant in strong acids, bases, and pitting aggressive environments. We also have demonstrated that the in-situ crystallization coating deposition method we developed is capable of coating surfaces of complex shapes and in confined spaces?two key features of an anodization process. Also, we have demonstrated that the ZSM-5 coating has good adhesion and thermal and thermal shock stability and performs reasonably well under bending and mechanical impact. It also can be easily painted with widely used polymeric paints.

Future Activities:

We are extending this technology to other zeolites such as MTW, BEA, LTA, and MFI with different composition to study if the approach is general for all zeolites. Also, we are investigating to shorten the deposition time and lower the reaction pressure.


Journal Articles on this Report : 1 Displayed | Download in RIS Format

Publications Views
Other project views: All 40 publications 23 publications in selected types All 22 journal articles
Publications
Type Citation Project Document Sources
Journal Article Cheng X, Wang Z, Yan Y. Corrosion-resistant zeolite coatings by in situ crystallization. Electrochemical and Solid-State Letters 2001;4(5):B23-B26. R828134 (2001)
R828134 (2002)
R828134 (2003)
R828134 (Final)
  • Abstract: ECS - Abstract
    Exit
  • Supplemental Keywords:

    corrosion, zeolite, coating, film, thin film, aluminum, aluminum alloys, steel, chromium, anodization, conversion coating., Sustainable Industry/Business, RFA, Scientific Discipline, Water, Toxics, Technology for Sustainable Environment, Sustainable Environment, Environmental Chemistry, 33/50, Wastewater, cleaner production/pollution prevention, Environmental Engineering, chromium & chromium compounds, microelectronics, carcinogenicity, pollution prevention, environmentally conscious manufacturing, anodization coatings, corrsion protection, zeolites, chromium free surface finishing, hexavalent chromium, water treatment, in situ crystallization, alternative materials, cleaner production, environmentally benign solvents, innovative technology, coating processes, green chemistry

    Relevant Websites:

    http://www.engr.ucr.edu/~yushan Exit EPA icon

    Progress and Final Reports:

    Original Abstract
  • 2002 Progress Report
  • 2003 Progress Report
  • Final Report
  • Top of Page

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Conclusions drawn by the principal investigators have not been reviewed by the Agency.

    Project Research Results

    • Final Report
    • 2003 Progress Report
    • 2002 Progress Report
    • Original Abstract
    40 publications for this project
    22 journal articles for this project

    Site Navigation

    • Grantee Research Project Results Home
    • Grantee Research Project Results Basic Search
    • Grantee Research Project Results Advanced Search
    • Grantee Research Project Results Fielded Search
    • Publication search
    • EPA Regional Search

    Related Information

    • Search Help
    • About our data collection
    • Research Grants
    • P3: Student Design Competition
    • Research Fellowships
    • Small Business Innovation Research (SBIR)
    Contact Us to ask a question, provide feedback, or report a problem.
    Last updated April 28, 2023
    United States Environmental Protection Agency

    Discover.

    • Accessibility
    • Budget & Performance
    • Contracting
    • EPA www Web Snapshot
    • Grants
    • No FEAR Act Data
    • Plain Writing
    • Privacy
    • Privacy and Security Notice

    Connect.

    • Data.gov
    • Inspector General
    • Jobs
    • Newsroom
    • Open Government
    • Regulations.gov
    • Subscribe
    • USA.gov
    • White House

    Ask.

    • Contact EPA
    • EPA Disclaimers
    • Hotlines
    • FOIA Requests
    • Frequent Questions

    Follow.