Skip to main content
U.S. flag

An official website of the United States government

Here’s how you know

Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

HTTPS

Secure .gov websites use HTTPS
A lock (LockA locked padlock) or https:// means you have safely connected to the .gov website. Share sensitive information only on official, secure websites.

  • Environmental Topics
  • Laws & Regulations
  • Report a Violation
  • About EPA
Contact Us

Grantee Research Project Results

Linking Food Web Structure, Grazer Toxin Resistance and Ecological Stoichiometry in Understanding Harmful Algal Blooms

EPA Grant Number: R831706
Title: Linking Food Web Structure, Grazer Toxin Resistance and Ecological Stoichiometry in Understanding Harmful Algal Blooms
Investigators: Dam, Hans G. , McManus, George , Kremer, Patricia
Institution: University of Connecticut
EPA Project Officer: Packard, Benjamin H
Project Period: January 1, 2005 through December 31, 2007 (Extended to December 31, 2008)
Project Amount: $408,315
RFA: Ecology and Oceanography of Harmful Algal Blooms (2004) RFA Text |  Recipients Lists
Research Category: Aquatic Ecosystems , Environmental Statistics , Water

Objective:

The complex dynamics and feedbacks of planktonic food webs determine the formation and fate of harmful algal blooms (HAB), and the trophic transfer of toxins. In principle, both bottom-up forcing (nutrient availability), which constrains the upper limit of plant productivity, and top-down forcing (grazing pressure), which keeps this productivity from reaching its maximum, control HAB. In the simplest case, depletion of top predators and enhanced nutrient supply due to eutrophication can account for the increase of plant production (including HAB) in coastal regions. However such prediction is biased if it ignores three feedback factors seldom considered in tandem in HAB studies: (1) the toxicity of the algae; 2) toxin resistance of grazer populations; and 3) the elemental stoichiometric (C: N: P) imbalance between algae and grazers. Three hypotheses involving these feedbacks will be tested. The first two hypotheses apply to conditions in which the algae are nutrient rich. H1: Trophic cascades are stronger in the presence of toxic algae. H2: trophic cascades are weaker in the presence of toxin-resistant grazer populations. H3: The strength of trophic cascades depends on the interaction of the stoichiometric imbalance of the grazers, the toxicity of the algae and the complexity of the food web.

Approach:

These three hypotheses will be tested in combination of controlled laboratory and mesocosm experiments. Rigorous experimental tests for toxic effect of prey on grazers will be run. Comparative and manipulative trophic cascade studies will also be run with simple food webs consisting of several trophic levels with mixtures of toxic and nontoxic foods, under nutrient replete and depleted conditions, and facing toxin resistant and nonresistant metazoan grazer populations.

Expected Results:

There is an immediate and urgent societal need to understand what factors govern HABs in order to develop effective HAB mitigation strategies. This work will provide some of the required tools to predict under what conditions HAB happen and to what extent the strength of trophic cascades involving toxic algae are modified by toxin-resistant grazers and the elemental composition of grazers and algae. This knowledge is essential for properly designing adequate mitigation plans for toxic algal blooms.

Publications and Presentations:

Publications have been submitted on this project: View all 29 publications for this project

Journal Articles:

Journal Articles have been submitted on this project: View all 5 journal articles for this project

Supplemental Keywords:

marine, health effects, ecological effects, dose-response, toxics, ecosystem, aquatic, habitat, public policy, ecology, genetics, oceanography, zoology, modeling, Northeast,, RFA, Ecosystem Protection/Environmental Exposure & Risk, Scientific Discipline, Water, algal blooms, Ecological Risk Assessment, Oceanography, Ecology and Ecosystems, phytoplankton, grazing and window opportunities, bloom dynamics, nutrient kinetics, food web, stoichiometry, algal bloom detection

Progress and Final Reports:

  • 2005 Progress Report
  • 2006 Progress Report
  • 2007 Progress Report
  • Final Report
  • Top of Page

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Conclusions drawn by the principal investigators have not been reviewed by the Agency.

    Project Research Results

    • Final Report
    • 2007 Progress Report
    • 2006 Progress Report
    • 2005 Progress Report
    29 publications for this project
    5 journal articles for this project

    Site Navigation

    • Grantee Research Project Results Home
    • Grantee Research Project Results Basic Search
    • Grantee Research Project Results Advanced Search
    • Grantee Research Project Results Fielded Search
    • Publication search
    • EPA Regional Search

    Related Information

    • Search Help
    • About our data collection
    • Research Grants
    • P3: Student Design Competition
    • Research Fellowships
    • Small Business Innovation Research (SBIR)
    Contact Us to ask a question, provide feedback, or report a problem.
    Last updated April 28, 2023
    United States Environmental Protection Agency

    Discover.

    • Accessibility
    • Budget & Performance
    • Contracting
    • EPA www Web Snapshot
    • Grants
    • No FEAR Act Data
    • Plain Writing
    • Privacy
    • Privacy and Security Notice

    Connect.

    • Data.gov
    • Inspector General
    • Jobs
    • Newsroom
    • Open Government
    • Regulations.gov
    • Subscribe
    • USA.gov
    • White House

    Ask.

    • Contact EPA
    • EPA Disclaimers
    • Hotlines
    • FOIA Requests
    • Frequent Questions

    Follow.