Skip to main content
U.S. flag

An official website of the United States government

Here’s how you know

Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

HTTPS

Secure .gov websites use HTTPS
A lock (LockA locked padlock) or https:// means you have safely connected to the .gov website. Share sensitive information only on official, secure websites.

  • Environmental Topics
  • Laws & Regulations
  • Report a Violation
  • About EPA
Contact Us

Grantee Research Project Results

Sustainable Biodegradable Green Nanocomposites From Bacterial Bioplastic For Automotive Applications

EPA Grant Number: R830904
Title: Sustainable Biodegradable Green Nanocomposites From Bacterial Bioplastic For Automotive Applications
Investigators: Drzal, Lawrence T. , Mohanty, Amar K. , Misra, Manjusri
Institution: Michigan State University
EPA Project Officer: Aja, Hayley
Project Period: January 1, 2004 through December 31, 2006 (Extended to December 31, 2007)
Project Amount: $369,613
RFA: Environmental Futures Research in Nanoscale Science Engineering and Technology (2002) RFA Text |  Recipients Lists
Research Category: Nanotechnology , Safer Chemicals

Objective:

Renewable resource-based “green” nanocomposites are the next generation of materials which provide a combination of performance and environmental compatibility. This proposal seeks to replace/substitute existing petroleum derived polypropylene (PP)/TPO (thermoplastic olefin) based nanocomposites with environmentally-friendly nanocomposites produced from bacterial-based bioplastic (polyhydroxyalkanoate, PHA) reinforced with compatibilized nanoclay for automotive applications. These nanocomposites are ‘sustainable’ materials since they are: recyclable; are stable in use but can be ‘triggered’ to biodegrade under composting conditions; are environmentally benign; and are commercially viable. In order to achieve ‘sustainability’ this proposal will address all of the critical components such as environment, economics, life cycle analysis, energy and education.

(a) Objectives: The objectives of this proposal are to synergistically combine biobased ‘green’ plastic materials technology and nanotechnology in a new manner that will have a positive impact upon the environment through its increased use in industrial applications. The objectives of this research include: nanoclay/bioplastics mechanical property optimization; research into bioplastic toughening methods and into new alternative, ecofriendly compatibilizers; and verification of sustainability through life-cycle analysis. A concurrent objective is to educate both graduate and undergraduate students the importance of nanotechnology with special importance on the environmental benefits of ‘green’ nanocomposites from environmental prospective.

(b) Experimental Approach: The PHA bioplastic is the only water-resistant biopolymer from renewable resources with potential for automotive applications as a result of its highly crystalline morphology. The project is based on an interactive approach which includes the interrelated topics of: (i) toughening of the bioplastic matrix with natural rubber to mimic the properties of TPO; (ii) plasticization with vegetable oil - - to replace existing undesirable pthalates (iii) synthesis of compatibilizer to bind clay and bioplastic and (iv) investigation and development of cost effective reduced-step extrusion processing. A unique university-industry team composed of Michigan State University, General Motors, Metabolix (bioplastic manufacturer) and Nanocor (producer of nanoclay) has been assembled to insure industrial and commercial viability.

Expected Results:

Environmentally benign materials: Since the bioplastic is a renewable resource-based material, the resulting green nanocomposites are eco-friendly because of their recyclability and compostability/biodegradability. This could result in a substantial reduction in green house gases and reduction of nation’s reliance on oil and enhancement of national security.

Fuel savings and emissions reduction due to lighter auto parts: The proposed lightweight green nanocomposites would reduce vehicle weight and would contribute significantly to fuel savings. About 7 liters of fuel per kilogram of vehicle weight could be saved over the life of a typical vehicle, or about 15 billion liters annually. In addition, ~3 kg of CO2 are produced by combustion of 1 kg of fuel, thereby reducing CO2 emissions as well.

Replacement of phthalate plasticizers: In the plastics industry, in order to improve processability, phthalate plasticizers (a suspected endocrine disrupter) are used extensively in petroleum based plastics. This project will use natural rubber as a toughening agent and derivitized soybean oil as a plasticizer which would create a significant positive impact on our environment as well as our agricultural and manufacturing industries.

Industrial Impact: Petroleum-based based plastics are nonbiodegradable and add to global warming. While performance limitations and high initial cost have restricted the adoption of bio-plastics to niche markets, the availability of higher performance ‘green’ plastics will prove to be beneficial for the ‘greening’ of U.S. automobiles and for recycling.

Publications and Presentations:

Publications have been submitted on this project: View all 30 publications for this project

Journal Articles:

Journal Articles have been submitted on this project: View all 3 journal articles for this project

Supplemental Keywords:

Green Chemistry, Material Science, Innovative Technology, Waste Reduction, Socio-Economic, Transportation, Ecosystem, Eco-Friendly Materials. Environmentally Conscious Manufacturing, Life-Cycle Analysis, Sustainable Development, Innovative Technology, Renewable
, Sustainable Industry/Business, RFA, Scientific Discipline, TREATMENT/CONTROL, INTERNATIONAL COOPERATION, POLLUTION PREVENTION, Technology for Sustainable Environment, Sustainable Environment, Environmental Chemistry, Chemistry and Materials Science, Chemicals Management, Environmental Engineering, Technology, Energy, nanomaterials, biodegradeable nanocomposites, biodegradable plastics, environmentally friendly green products, nanoparticles, automotive interior parts, environmental sustainability, environmentally benign alternative, environmentally conscious manufacturing, green design, energy conservation, environmentally applicable nanoparticles, polypropylene substitute, nanocomposite, nanotechnology, alternative materials, automotive industry, biopolymers, clean manufacturing, clean technologies, cleaner production, Design for Environment, environmentally conscious design, environmental conscious construction, air pollution control

Progress and Final Reports:

  • 2004
  • 2005 Progress Report
  • 2006 Progress Report
  • Final Report
  • Top of Page

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Conclusions drawn by the principal investigators have not been reviewed by the Agency.

    Project Research Results

    • Final Report
    • 2006 Progress Report
    • 2005 Progress Report
    • 2004
    30 publications for this project
    3 journal articles for this project

    Site Navigation

    • Grantee Research Project Results Home
    • Grantee Research Project Results Basic Search
    • Grantee Research Project Results Advanced Search
    • Grantee Research Project Results Fielded Search
    • Publication search
    • EPA Regional Search

    Related Information

    • Search Help
    • About our data collection
    • Research Grants
    • P3: Student Design Competition
    • Research Fellowships
    • Small Business Innovation Research (SBIR)
    Contact Us to ask a question, provide feedback, or report a problem.
    Last updated April 28, 2023
    United States Environmental Protection Agency

    Discover.

    • Accessibility
    • Budget & Performance
    • Contracting
    • EPA www Web Snapshot
    • Grants
    • No FEAR Act Data
    • Plain Writing
    • Privacy
    • Privacy and Security Notice

    Connect.

    • Data.gov
    • Inspector General
    • Jobs
    • Newsroom
    • Open Government
    • Regulations.gov
    • Subscribe
    • USA.gov
    • White House

    Ask.

    • Contact EPA
    • EPA Disclaimers
    • Hotlines
    • FOIA Requests
    • Frequent Questions

    Follow.