Skip to main content
U.S. flag

An official website of the United States government

Here’s how you know

Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

HTTPS

Secure .gov websites use HTTPS
A lock (LockA locked padlock) or https:// means you have safely connected to the .gov website. Share sensitive information only on official, secure websites.

  • Environmental Topics
  • Laws & Regulations
  • Report a Violation
  • About EPA
Contact Us

Grantee Research Project Results

Iron-TAML/peroxide Cyanotoxin Degradation

EPA Grant Number: SU839461
Title: Iron-TAML/peroxide Cyanotoxin Degradation
Investigators: Collins, Terrence J. , Ryabov, Aleksandr D , Nagarajan, Anantha , Denardo, Matthew , Somasundar, Yogesh
Current Investigators: Collins, Terrence J. , Ryabov, Aleksandr D , Somasundar, Yogesh , Nagarajan, Anantha , Denardo, Matthew
Institution: Carnegie Mellon University
EPA Project Officer: Page, Angela
Phase: I
Project Period: March 1, 2019 through February 29, 2020
Project Amount: $15,000
RFA: P3 Awards: A National Student Design Competition Focusing on People, Prosperity and the Planet (2018) RFA Text |  Recipients Lists
Research Category: P3 Awards , P3 Challenge Area - Air Quality , P3 Challenge Area - Safe and Sustainable Water Resources , P3 Challenge Area - Sustainable and Healthy Communities , P3 Challenge Area - Chemical Safety

Objective:

Cyanobacteria produce cyanotoxins, commonly neurotoxic microcystins. In recent years, cyanobacterial proliferation has increased 100-fold country-wide, expanding cyanotoxin contamination of recreational and drinking water sources and contributing to a common form of gastroenteritis accompanied by liver and kidney damage. Microcystins will be subjected to fierce NewTAML (Tetra-amido Macrocyclic Ligand)/ peroxide oxidizing conditions- NewTAML catalysts are the most potent small molecule, peroxidase enzyme mimics known- in pursuit of a safe, viable decontamination technology for cyanobacterial and cyanotoxin contaminated water.

Approach:

The effectiveness of NewTAML-peroxide catalysis in destroying microcystins will be evaluated at ambient pHs and temperatures. Degradation products and the mechanisms of action will be characterized using multiple spectroscopic techniques. Zebrafish toxicity studies will be carried out. The optimized NewTAML process will be compared with literature reports of other cyanotoxin-removal approaches.

Expected Results:

Discovering superior NewTAML-peroxide performances for cyanotoxin treatment will open the door to advancing the health of people and the planet through real-world technology to fill an important safety gap. NewTAML processes are so efficient, that natural water bodies might be treatable for cyanotoxins. The work will advance the research skills of three STEM students (2 females), as well as entrepreneurial/licensing knowledge for NewTAMLs, while producing experts in cyanobacterial problems.

The development of a cyanotoxin destruction technology that is simple, effective and safe to use would provide an important tool for controlling cyanobacterial injuries to human health and the environment.

Publications and Presentations:

Publications have been submitted on this project: View all 1 publications for this project

Supplemental Keywords:

Toxics, pathogens, bacteria, aquatic, green chemistry, sustainable development, clean technologies, innovative technology, remediation, disinfection, oxidation, environmental chemistry, analytical, catalysis, NewTAML catalysts, cyanobacteria, cyanotoxins, microcystins, water purification, zebrafish.

Progress and Final Reports:

  • Final Report
  • Top of Page

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Conclusions drawn by the principal investigators have not been reviewed by the Agency.

    Project Research Results

    • Final Report
    1 publications for this project

    Site Navigation

    • Grantee Research Project Results Home
    • Grantee Research Project Results Basic Search
    • Grantee Research Project Results Advanced Search
    • Grantee Research Project Results Fielded Search
    • Publication search
    • EPA Regional Search

    Related Information

    • Search Help
    • About our data collection
    • Research Grants
    • P3: Student Design Competition
    • Research Fellowships
    • Small Business Innovation Research (SBIR)
    Contact Us to ask a question, provide feedback, or report a problem.
    Last updated April 28, 2023
    United States Environmental Protection Agency

    Discover.

    • Accessibility
    • Budget & Performance
    • Contracting
    • EPA www Web Snapshot
    • Grants
    • No FEAR Act Data
    • Plain Writing
    • Privacy
    • Privacy and Security Notice

    Connect.

    • Data.gov
    • Inspector General
    • Jobs
    • Newsroom
    • Open Government
    • Regulations.gov
    • Subscribe
    • USA.gov
    • White House

    Ask.

    • Contact EPA
    • EPA Disclaimers
    • Hotlines
    • FOIA Requests
    • Frequent Questions

    Follow.