Skip to main content
U.S. flag

An official website of the United States government

Here’s how you know

Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

HTTPS

Secure .gov websites use HTTPS
A lock (LockA locked padlock) or https:// means you have safely connected to the .gov website. Share sensitive information only on official, secure websites.

  • Environmental Topics
  • Laws & Regulations
  • Report a Violation
  • About EPA
Contact Us

Grantee Research Project Results

2017 Progress Report: Development of a larval fish neurobehavior adverse outcome pathway to predict effects of contaminants at the ecosystem level and across multiple ecologically relevant taxa

EPA Grant Number: R835798
Title: Development of a larval fish neurobehavior adverse outcome pathway to predict effects of contaminants at the ecosystem level and across multiple ecologically relevant taxa
Investigators: Murphy, Cheryl A. , Carvan, Michael , Jones, Michael , Garcia-Reyero, Natàlia
Current Investigators: Murphy, Cheryl A. , Garcia-Reyero, Natàlia , Carvan, Michael , Jones, Michael
Institution: Michigan State University , Mississippi State University , University of Wisconsin - Milwaukee
Current Institution: Michigan State University , University of Wisconsin - Milwaukee , Mississippi State University
EPA Project Officer: Spatz, Kyle
Project Period: June 1, 2015 through May 31, 2018 (Extended to May 31, 2021)
Project Period Covered by this Report: May 1, 2017 through April 30,2018
Project Amount: $800,000
RFA: Systems-Based Research for Evaluating Ecological Impacts of Manufactured Chemicals (2014) RFA Text |  Recipients Lists
Research Category: Chemical Safety for Sustainability

Objective:

The overall objective of this project is to advance the adverse outcome pathway framework to predict effects of contaminants with different modes of action on the neurobehavior of larval fish from three different species and to determine what Adverse Outcome Pathways (AOPs) are common between species.

Objective 1: Identify genes predictive of neurobehavior toxicity in response to exposure to two different chemicals with different molecular initiating events and modes of action in order to identify neurobehavior AOPs using a reverse engineering approach on zebrafish

Objective 2: Determine the effects of PCB126 and MeHg on gene expression and behavior of the larval stage of two species of ecological relevance (fathead minnow and yellow perch).

Objective 3: Incorporate behavioral effects and transcriptomics data from fathead minnow and yellow perch into an individual-based model (IBM) to predict changes in growth and survival to complete the neurobehavior AOP suitable for ecological risk assessment for MeHg and PCB126.

Objective 4: Define and compare neurobehavioral AOPs between species and contaminants to determine their similarities and to elucidate what kind of information is lost or gained by using a typical laboratory model to inform on environmentally relevant species at the population level.

Future Activities:

We will complete the fathead minnow behavior assays, analyze the transcriptomic data from all species, and finish analyzing the behavior data. We will complete a neurobehavior AOP.


Journal Articles on this Report : 1 Displayed | Download in RIS Format

Publications Views
Other project views: All 23 publications 8 publications in selected types All 6 journal articles
Publications
Type Citation Project Document Sources
Journal Article Murphy CA, Nisbet RM, Antczak P, Garcia-Reyero N, Gergs A, Lika K, Mathews T, Muller EB, Nacci D, Peace A, Remien CH, Schultz IR, Stevenson LM, Watanabe KH. Incorporating suborganismal processes into dynamic energy budget models for ecological risk assessment. Integrated Environmental Assessment and Management 2018;14(5):615-624. R835798 (2017)
R835798 (2018)
R835797 (2017)
  • Abstract from PubMed
  • Abstract: Wiley-Abstract
    Exit
  • Supplemental Keywords:

    transcriptomics, larval fish, fathead minnow, yellow perch, zebrafish, neurobehavior, MeHg, PCBs, adverse outcome pathways, individual-based models, ecological risk assessment, uncertainty, risk

    Progress and Final Reports:

    Original Abstract
  • 2015 Progress Report
  • 2016 Progress Report
  • 2018 Progress Report
  • 2019 Progress Report
  • Final Report
  • Top of Page

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Conclusions drawn by the principal investigators have not been reviewed by the Agency.

    Project Research Results

    • Final Report
    • 2019 Progress Report
    • 2018 Progress Report
    • 2016 Progress Report
    • 2015 Progress Report
    • Original Abstract
    23 publications for this project
    6 journal articles for this project

    Site Navigation

    • Grantee Research Project Results Home
    • Grantee Research Project Results Basic Search
    • Grantee Research Project Results Advanced Search
    • Grantee Research Project Results Fielded Search
    • Publication search
    • EPA Regional Search

    Related Information

    • Search Help
    • About our data collection
    • Research Grants
    • P3: Student Design Competition
    • Research Fellowships
    • Small Business Innovation Research (SBIR)
    Contact Us to ask a question, provide feedback, or report a problem.
    Last updated April 28, 2023
    United States Environmental Protection Agency

    Discover.

    • Accessibility
    • Budget & Performance
    • Contracting
    • EPA www Web Snapshot
    • Grants
    • No FEAR Act Data
    • Plain Writing
    • Privacy
    • Privacy and Security Notice

    Connect.

    • Data.gov
    • Inspector General
    • Jobs
    • Newsroom
    • Open Government
    • Regulations.gov
    • Subscribe
    • USA.gov
    • White House

    Ask.

    • Contact EPA
    • EPA Disclaimers
    • Hotlines
    • FOIA Requests
    • Frequent Questions

    Follow.