Grantee Research Project Results
2016 Progress Report: Integrated Measurements and Modeling Using U.S. Smart Homes to Assess Climate Change Impacts on Indoor Air Quality
EPA Grant Number: R835756Title: Integrated Measurements and Modeling Using U.S. Smart Homes to Assess Climate Change Impacts on Indoor Air Quality
Investigators: Lamb, Brian , Kirk, W. Max , Pressley, Shelley N. , Walden, Von P. , Jobson, B. Thomas , Cook, Diane
Current Investigators: Lamb, Brian , Pressley, Shelley N. , Jobson, B. Thomas , Cook, Diane , Kirk, W. Max , Walden, Von P.
Institution: Washington State University
EPA Project Officer: Keating, Terry
Project Period: November 1, 2014 through October 31, 2017 (Extended to December 31, 2018)
Project Period Covered by this Report: November 1, 2015 through October 31,2016
Project Amount: $996,588
RFA: Indoor Air and Climate Change (2014) RFA Text | Recipients Lists
Research Category: Air Quality and Air Toxics , Climate Change , Air
Objective:
The overall goal is to improve our understanding of the complex intersection between indoor air quality and climate change. Our objectives are to address three specific science questions: (1) How do local climate conditions, including extremes in the range of weather conditions, affect indoor air quality factors, including energy consumption, ventilation rates, occupant behavior and indoor pollution levels? Are there generalizations that occur across the ensemble of buildings and locations? (2) How well does the CONTAM indoor air quality model perform for the range of conditions and buildings in our Smart Home ensemble? (3) For future climate conditions, what are the projected indoor air quality levels in a set of buildings representative of U.S. housing stocks, and how sensitive are these levels to plausible changes in building properties and human behavior?
Progress Summary:
Our research program involves automated ventilation rate and indoor/outdoor air quality measurements in selected houses to yield a database for assessment of the effects of climate variability, including extreme weather events, on occupant behavior, energy consumption and corresponding indoor air quality. To date, we have sampled six houses during winter and summer periods. This report briefly summarizes initial results from these measurements. The results include periods for two houses with extensive outdoor smoke from wildland fires. Overall, results show typical, low penetration rates for fine particulate matter (PM2.5) and ozone in the range of 5–20 percent and elevated volatile organic compound levels indoors due to a variety of indoor sources. These data are also being used for evaluation of the CONTAM indoor air quality model, which in turn will be used to investigate how changes in climate, derived for the 2050s from downscaled climate and air quality projections, affect indoor air quality. We have implemented CONTAM on our high-performance computing cluster and designed a matrix of simulations for the current and future global change analyses. Results from this work have been presented at a number of technical meetings during the past year, and two draft manuscripts have been prepared for submission to peer-reviewed journals.
Future Activities:
The emphasis in the third year is on completion of the measurements in the last set of homes for summer and winter and analysis of all of the measurement results. Several papers are envisioned based on the measurement data set. We will also complete CONTAM modeling of the test houses and evaluation of the model performance. The matrix of current and future climate simulations will be conducted to assess the effects of global change on indoor air quality in the United States.
Journal Articles:
No journal articles submitted with this report: View all 15 publications for this projectSupplemental Keywords:
Indoor air quality, formaldehyde, ozone, PM2.5, air exchange rateProgress and Final Reports:
Original AbstractThe perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Conclusions drawn by the principal investigators have not been reviewed by the Agency.