Science Inventory

COMPARISON OF HYDROLOGIC RESPONSES AT DIFFERENT WATERSHED SCALES

Citation:

Mohamoud, Y. COMPARISON OF HYDROLOGIC RESPONSES AT DIFFERENT WATERSHED SCALES. U.S. Environmental Protection Agency, Washington, DC, EPA/600/R-04/103 (NTIS PB2005-101439), 2004.

Impact/Purpose:

The overall objective is to develop watershed modeling tools for the immediate client (CVI) and their stakeholders in the Mid-Atlantic Highlands. This research continues the contributions that REVA has made to the CVI toolset and adds modeling and decision support capabilities for more general use by managers. To facilitate the prediction and analysis of fish health issues by EPA Program and Regional Offices and other environmental agencies, process-based models that describe these processes will be implemented:

1. the expected trophic dynamics of the dominant fish species

2. the spawning and recruitment dynamics of the dominant fish species

3. the bioaccumulation of organic chemicals and metals in aquatic biota

4. how physical habitat and chemical water quality impact fish feeding, reproduction, survival, and migration

To facilitate the use and application of these models, graphical user interfaces (GUI), supporting databases, and libraries of management scenarios will also be developed. Models will be linkable to integrated water quality and hydrologic models that simulate habitat characteristics (e.g., water depth, current velocity, water temperature and sediment loadings) that determine the survival, reproduction, and recruitment of fish and aquatic invertebrates. Similar to what has been achieved in REVA, frameworks based on the biogeography of fish will be developed to apply these models spatially for regional assessments of important fish health issues.

Objectives of this task between FY03 and FY05:

To provide modeling and decision support capabilities for aquatic resources compatible with existing geographic information (GIS) frameworks to evaluate effectiveness (and ultimately cost-benefit) of restoration activities planned in Region 3, initially the Mid-Atlantic Highlands region. This includes the primary interests in evaluating riparian zone restoration (using Rosgen methods) and acid mine drainage remediation.

To develop methods that explicitly link process models and spatial analysis methods across spatial and temporal scales.

To identify knowledge and information gaps in the integration of REVA and process models that enable projections of future ecosystem state.

To create a new generation of quantitative environmental assessment tools that explicitly address issues of scale, are not restricted in extent of application, and enable efficient rescaling (both spatial and temporal).

This research supports long-term goals established in ORD's multi-year research plans for Both GPRA Goal 2 (Water Quality) and Goal 8.1.1 (Sound Science/Ecological Research). This research will provide the tools to assess and diagnose impairment in aquatic ecosystems and the sources of associated stressors and to forecast the ecological, economic and human health outcomes of alternative solutions. Central to this task (as described in Goal 8) is the development and demonstration of methods to the states, tribes and local managers to: (1) assess the condition of waterbodies in a scientifically-defensible and representative way while allowing for aggregation and assessment of trends at multiple scales, (2) diagnose cause and forecast future condition in a scientifically defensible fashion to more effectively protect and restore valued ecosystems, and (3) assess current and future ecological conditions, probable causes of impairments and management alternatives.

Description:

Land surface hydrology controls runoff production and the associated transport of sediments, and a wide variety of anthropogenic organic chemicals, and nutrients from upland landscape areas and hillslopes to streams and other water bodies. Based on interactions between landscape characteristics and precipitation inputs, watersheds respond differently to different climatic inputs (e.g. precipitation and solar radiation). This study compares the hydrologic responses of the Mid-Atlantic watersheds, and identifies the landscape and climatic descriptors that control those responses. Our approach was to select representative watersheds from the Mid-Atlantic region, group the watersheds by physiographic province and ecoregion, and then collect landscape, climate, and hydrologic response descriptor data for each selected watershed. For example, we extracted extensive landscape descriptor data from soil, land use and land cover, and digital elevation model geographic information system (GIS) databases. After sufficient data was collected, we conducted a variety of studies to determine how different landscape and climatic descriptors influence the hydrologic response of Mid-Atlantic watersheds.

This report is comprised of four main parts. Part I describes the selection of the representative study watersheds and the determination of representative physical landscape descriptors for each watershed using geographic information system analysis tools. Part II characterizes the climate and associated hydrologic responses of the study watersheds. To select climate descriptors that are good predictors of hydrologic response, we examined a large number of candidate descriptors. Based on our examination, we selected dryness index and mean monthly rainfall as the best hydrologic response predictors. In Part II, we also present the results of our study hydrologic response comparisons of the study watersheds using a water balance approach. The water balance approach was based on comparisons of precipitation, streamflow, and evapotranspiration at annual, monthly, and daily time scales. These comparisons revealed that elevation and latitudinal position strongly influence hydrologic response. The results also showed that mountainous watersheds of the Appalachian Plateau, Ridge and Valley, and Blue Ridge Physiographic Provinces have more streamflow and less evapotranspiration than watersheds located in the Piedmont Province, and that snowmelt contributes a large portion of streamflow. Part III presents relationships we derived between landscape-climatic descriptors and the hydrologic response descriptors. Flow duration indices (Q1...Q95) were used to represent the hydrologic responses of the study watersheds. In Part III, we also present comparisons of the hydrologic responses of the study watersheds at high flow condition, represented by the Q1 index, medium flow condition represented by the Q50 index, and low flow condition represented by the Q95 index. These comparisons revealed that: the Appalachian Plateau, ridge-dominated Ridge and Valley, and Blue Ridge watersheds have the highest Q1 and Q50 indices; the valley-dominated Ridge and Valley watersheds have the lowest Q50 index, and the Piedmont watersheds have the lowest Q1 index and a relatively high Q95 index. Finally, Part IV discusses some of the implications of the study results for watershed management. We also present applications of the research for hydrologic modeling and watershed assessment.

URLs/Downloads:

COMPARISON OF HYDROLOGIC RESPONSES AT DIFFERENT WATERSHED SCALES   (PDF,NA pp, 1767 KB,  about PDF)

Record Details:

Record Type: DOCUMENT (PUBLISHED REPORT/REPORT)
Product Published Date: 09/30/2004
Record Last Revised: 09/03/2015
OMB Category: Other
Record ID: 87559

Organization:

U.S. ENVIRONMENTAL PROTECTION AGENCY

OFFICE OF RESEARCH AND DEVELOPMENT

NATIONAL EXPOSURE RESEARCH LABORATORY

ECOSYSTEMS RESEARCH DIVISION

ECOSYSTEMS ASSESSMENT BRANCH