Science Inventory

DIVALENT INORGANIC REACTIVE GASEOUS MERCURY EMISSIONS FROM A MERCURY CELL CHLOR-ALKALI PLANT AND ITS IMPACT ON NEAR FIELD ATMOSPHERIC DRY DEPOSITION

Citation:

Landis, M S., G. J. Keeler, K. I. AlWali, AND R. K. STEVENS. DIVALENT INORGANIC REACTIVE GASEOUS MERCURY EMISSIONS FROM A MERCURY CELL CHLOR-ALKALI PLANT AND ITS IMPACT ON NEAR FIELD ATMOSPHERIC DRY DEPOSITION. ATMOSPHERIC ENVIRONMENT 38(4):613-622, (2004).

Impact/Purpose:

The overall research objective of this task is to improve our understanding of the emission, transport, transformation, and deposition of atmospheric mercury. Information garnered from this research is used to improve and evaluate EPA deterministic models that are used to investigate the (i) relative impact to local, regional, and global sources to atmospheric mercury deposition, and (ii) benefits of various emission reduction scenarios.

Specifically, individual research project objectives are listed below:

(1) Evaluate the ability of speciated mercury (Hg0, Hg2+, HgP) measurements to aid source apportionment models in identifying anthropogenic source contributions to atmospheric mercury deposition



(2) Elucidate the contribution of coal combustion sources to observed mercury wet deposition in the Ohio River Valley



(3) Obtain atmospheric profiles (200 - 12,000 ft) of speciated ambient mercury off the south Florida Coast

- Evaluate the role of long range transport of RGM to Florida in the marine free troposphere.

- Identify any vertical mercury gradients that might indicate the presence of rapid mercury chemistry in air or in cloud water.

(4) Conduct research at Mauna Loa Observatory to elucidate elemental mercury oxidation in the remote marine free troposphere.

(5) Conduct laboratory kinetics experiments to determine the rate constants of elemental mercury oxidation to gaseous inorganic divalent mercury species from atmospheric halide species (e.g. BrO, ClO).

Description:

The emission of inorganic divalent reactive gaseous mercury (RGM) from a mercury cell chlor-alkali plant (MCCAP) cell building and the impact on near field (100 km) dry deposition was investigated as part of a larger collaborative study between EPA, University of Michigan, Oak Ridge National Laboratory, Chlorine Institute, and Olin Corporation in February 2000. Measurements in the cell building roof vent showed that RGM constituted 1.9 +/- 0.8% (mean +/- standard deviation) of the concurrently measured elemental gaseous mercury (Hg0). This relationship was used to calculate an estimated RGM emission rate from the cell building roof vent of 10.4 g day-1. The percentage of RGM/Hg0 at ambient monitoring sites 350 m (1.5%) and 800 m (1.3%) away while being impacted by cell building emissions suggests the rapid deposition of RGM species. The observed 2% relative emission of RGM/Hg0 was substantially lower than the 30% estimate utilized by EPA to model the impact of MCCAPs for the 1997 Mercury Report to Congress. However, the MCCAP was still found to present a significant impact on near field mercury atmospheric dry deposition. A Lagrangian transport and deposition modeling framework using only emissions from the MCCAP found the mean annualized dry deposition of mercury within a 10 km radius of the facility contributed the annual equivalent of 4.6 ug m-2. For comparison, the total annual wet mercury deposition measured at the Savannah River National Mercury Deposition Network sampling site ~30 km away was 9.8 ug m-2.

This work has been funded wholly or in part by the U.S. Environmental Protection Agency. It has been subjected to Agency Review and approved for publication. Mention of trade names or commercial products does not constitute an endorsement or recommendation for use.

Record Details:

Record Type:DOCUMENT( JOURNAL/ PEER REVIEWED JOURNAL)
Product Published Date:02/01/2004
Record Last Revised:07/25/2008
OMB Category:Other
Record ID: 75433