Science Inventory

DEVELOPMENT OF ENVIRONMENTAL INDICES FOR GREEN CHEMICAL PRODUCTION AND USE

Impact/Purpose:

This project intends to develop practical methods for predicting the potential risk from chemical manufacturing and use. The initial phase of this effort will provide a comparison of several existing risk assessment methods for different application scenarios: (1) Pollution Prevention (P2) Assessment Framework stage I risk analysis method, (2) Toxicity-based method, (3) Toxicity/Persistence Index, (4) Partitioning Persistence/Toxicity Index, and (5) Concentration/Toxicity method. This comparison will illustrate the influence of simplifications of transport and exposure estimation on risk prediction. Ultimately, a model that considers emission rates, toxicity, and more realistic attenuation mechanisms of chemicals will be developed to evaluate the environmental performance of process alternatives.

This project intends to develop practical methods for predicting the potential risk from chemical manufacturing and use. The initial phase of this effort will provide a comparison of several existing risk assessment methods for different application scenarios: (1) Pollution Prevention (P2) Assessment Framework stage I risk analysis method, (2) Toxicity-based method, (3) Toxicity/Persistence Index, (4) Partitioning Persistence/Toxicity Index, and (5) Concentration/Toxicity method. This comparison will illustrate the influence of simplifications of transport and exposure estimation on risk prediction. Ultimately, a model that considers emission rates, toxicity, and more realistic attenuation mechanisms of chemicals will be developed to evaluate the environmental performance of process alternatives.

Description:

Chemical production, use and disposal cause adverse impacts on the environment. Consequently, much research has been conducted to develop methods for estimating the risk of chemicals and to screen them based on environmental impact. Risk assessment may be subdivided into two categories: environmental fate and exposure assessment, and adverse effect assessment. It is difficult to estimate the exposure level using complex fate and exposure models because many input parameters are not known. Due to the lack of reliable data and estimation techniques for determining input parameters, past research efforts in the field of risk assessment incorporate simplifying assumptions into the fate and exposure assessment that can result in poor decisions, even wrong decisions.

This project is expected to seek a middle ground to evaluate risks for chemical production and use. It will provide industry with environmental impact information. This knowledge will be applied in the conceptual design phase such that not only economic and safety factors are considered, but also environmental factors. This project will help the government to evaluate the environmental performance of high-production-volume (HPV) chemicals and their manufacturing pathways not only based on the total release, but also their adverse effects.

URLs/Downloads:

URL

1999 Progress Report

Record Details:

Record Type:PROJECT( ABSTRACT )
Start Date:01/01/1997
Completion Date:01/01/1999
Record ID: 57891