Science Inventory

Origins, fate, and actions of methylated trivalent metabolites of inorganic arsenic: Progress and prospects

Citation:

Styblo, M., A. Venkatratnam, R. Fry, AND D. Thomas. Origins, fate, and actions of methylated trivalent metabolites of inorganic arsenic: Progress and prospects. Archives of Toxicology. Springer, New York, NY, 95(5):1547-1572, (2021). https://doi.org/10.1007/s00204-021-03028-w

Impact/Purpose:

This is a comprehensive review on the current understanding of the function of arsenic methyltransferases in the metabolism of arsenic.

Description:

The toxic metalloid inorganic arsenic (iAs) is widely distributed in the environment. Chronic exposure to iAs from environmental sources has been linked to a variety of human diseases. Methylation of iAs is the primary pathway for metabolism of iAs. In humans, methylation of iAs is catalyzed by arsenic (+3 oxidation state) methyltransferase (AS3MT). Conversion of iAs to mono- and di-methylated species (MAs and DMAs) detoxifies iAs by increasing the rate of whole body clearance of arsenic. Interindividual differences in iAs metabolism play key roles in pathogenesis of and susceptibility to a range of disease outcomes associated with iAs exposure. These adverse health effects are in part associated with the production of methylated trivalent arsenic species, methylarsonous acid (MAsIII) and dimethylarsinous acid (DMAsIII), during AS3MT-catalyzed methylation of iAs. The formation of these metabolites activates iAs to unique forms that cause disease initiation and progression. Taken together, the current evidence suggests that methylation of iAs is a pathway for detoxification and for activation of the metalloid. Beyond this general understanding of the consequences of iAs methylation, many questions remain unanswered. Our knowledge of metabolic targets for MAsIII and DMAsIII in human cells and mechanisms for interactions between these arsenicals and targets is incomplete. Development of novel analytical methods for quantitation of MAsIII and DMAsIII in biological samples promises to address some of these gaps. Here, we summarize current knowledge of the enzymatic basis of MAsIII and DMAsIII formation, the toxic actions of these metabolites, and methods available for their detection and quantification in biomatrices. Major knowledge gaps and future research directions are also discussed.

Record Details:

Record Type:DOCUMENT( JOURNAL/ PEER REVIEWED JOURNAL)
Product Published Date:05/01/2021
Record Last Revised:01/13/2022
OMB Category:Other
Record ID: 353919