Science Inventory

Characterization of emissions from a pilot-scale combustor operating on coal blended with woody biomass

Citation:

Yelverton, T., A. Brashear, David Nash, J. Brown, C. Singer, P. Kariher, J. Ryan, AND P. Burnette. Characterization of emissions from a pilot-scale combustor operating on coal blended with woody biomass. FUEL. Elsevier Science BV, Amsterdam, Netherlands, 264:0, (2020).

Impact/Purpose:

Emissions generated from the combustion of coal have been a subject of regulation by the United States Environmental Protection Agency (U.S. EPA) and State agencies for years, as they have been associated with adverse effects on human health and the environment. Over the past several decades, regulations on these facility emissions have become more stringent and have therefore caused industry to look toward new pre- and post-combustion control technologies. And, in more recent years, there has been a “push” toward renewable and cleaner burning alternative fuels as replacements for traditional fossil fuels. Part of this “push” has been accomplished by States and Regions offering incentives and options for renewable portfolios, which over half of the states now have in some form.

Description:

Emissions generated from the combustion of coal have been a subject of regulation by the United States Environmental Protection Agency (U.S. EPA) and State agencies for years, as they have been associated with adverse effects on human health and the environment. Over the past several decades, regulations on these facility emissions have become more stringent and have therefore caused industry to look toward new pre- and post-combustion control technologies. And, in more recent years, there has been a “push” toward renewable and cleaner burning alternative fuels as replacements for traditional fossil fuels. Part of this “push” has been accomplished by States and Regions offering incentives and options for renewable portfolios, which over half of the states now have in some form. The current study investigates the potential changes in both gaseous and particulate emissions from the use of a variety of woody biomass materials as a drop-in replacement for coal as compared to use of 100% bituminous coal. Four different biomass materials are blended individually with coal at 20% and 40% by mass for testing on the U.S. EPA’s Multi-Pollutant Control Research Facility, a pilot-scale coal-fired facility located in Research Triangle Park, North Carolina. Emissions are calculated based on measurements from the flue gas to characterize gaseous species (CO, CO2, NOX, SO2, other acid gases, and several organic hazardous air pollutants) as well as fine and ultrafine particulate (mass, size distribution, number count, elemental carbon, organic carbon, and black carbon) and compared among each combination of fuels and 100% bituminous coal.

URLs/Downloads:

www.elsevier.com/locate/fuel   Exit

Record Details:

Record Type: DOCUMENT ( JOURNAL/ PEER REVIEWED JOURNAL)
Product Published Date: 03/15/2020
Record Last Revised: 09/09/2020
OMB Category: Other
Record ID: 349685