Science Inventory

Green Infrastructure and Watershed-Scale Hydrology in Mixed Land Cover System

Citation:

Hoghooghi, N., H. Golden, AND B. Bledsoe. Green Infrastructure and Watershed-Scale Hydrology in Mixed Land Cover System. 2017 AGU Fall Meeting, New Orleans, LA, December 11 - 15, 2017.

Impact/Purpose:

Advances in Green Infrastructure Development: Benefits from Point to Watershed Scale II Posters

Description:

Urbanization results in replacement of pervious areas (e.g., vegetation, topsoil) with impervious surfaces such as roads, roofs, and parking lots, which cause reductions in interception, evapotranspiration, and infiltration, and increases in surface runoff (overland flow) and pollutant loads and concentrations. Research on the effectiveness of different Green Infrastructure (GI), or Low Impact Development (LID), practices to reduce these negative impacts on stream flow and water quality has been mostly focused at the local scale (e.g., plots, small catchments). However, limited research has considered the broader-scale effects of LID, such as how LID practices influence water quantity, nutrient removal, and aquatic ecosystems at watershed scales, particularly in mixed land cover and land use systems. We use the Visualizing Ecosystem Land Management Assessments (VELMA) model to evaluate the effects of different LID practices on daily and long-term watershed-scale hydrology, including infiltration surface runoff. We focus on Shayler Crossing (SHC) watershed, a mixed land cover (61% urban, 24% agriculture, 15% forest) subwatershed of the East Fork Little Miami River watershed, Ohio, United States, with a drainage area of 0.94 km2. The model was calibrated to daily stream flow at the outlet of SHC watershed from 2009 to 2010 and was applied to evaluate diverse distributions (at 25% to 100% implementation levels) and types (e.g., pervious pavement and rain gardens) of LID across the watershed. Results show reduced surface water runoff and higher rates of infiltration concomitant with increasing LID implementation levels; however, this response varies between different LID practices. The highest magnitude response in streamflow at the watershed outlet is evident when a combination of LID practices is applied. The combined scenarios elucidate that the diverse watershed-scale hydrological responses of LID practices depend primarily on the type and extent of the implemented practices. Our work provides a key advancement toward improving current understanding of the effectiveness and efficiencies of LID approaches in mixed land cover watersheds.

URLs/Downloads:

https://fallmeeting.agu.org/2017/   Exit EPA's Web Site

Record Details:

Record Type:DOCUMENT( PRESENTATION/ POSTER)
Product Published Date:12/15/2017
Record Last Revised:12/15/2017
OMB Category:Other
Record ID: 338733