Science Inventory

Linking field-based metabolomics and chemical analyses to prioritize contaminants of emerging concern in the Great Lakes basin

Citation:

Davis, J., D. Ekman, Q. Teng, G. Ankley, J. Berninger, J. Cavallin, K. Jensen, M. Kahl, A. Schroeder, Dan Villeneuve, Z. Jorgenson, K. Lee, AND Tim Collette. Linking field-based metabolomics and chemical analyses to prioritize contaminants of emerging concern in the Great Lakes basin. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY. Society of Environmental Toxicology and Chemistry, Pensacola, FL, 35(10):2493–2502, (2016).

Impact/Purpose:

Published in the journal, Environmental Toxicology and Chemistry.

Description:

The ability to focus on the most biologically relevant contaminants affecting aquatic ecosystems can be challenging because toxicity-assessment programs have not kept pace with the growing number of contaminants requiring testing. Because it has proven effective at assessing the biological impacts of potentially toxic contaminants, profiling of endogenous metabolites (metabolomics) may help screen out contaminants with a lower likelihood of eliciting biological impacts, thereby prioritizing the most biologically important contaminants. The authors present results from a study that utilized cage-deployed fathead minnows (Pimephales promelas) at 18 sites across the Great Lakes basin. They measured water temperature and contaminant concentrations in water samples (132 contaminants targeted, 86 detected) and used 1H-nuclear magnetic resonance spectroscopy to measure endogenous metabolites in polar extracts of livers. They used partial least-squares regression to compare relative abundances of endogenous metabolites with contaminant concentrations and temperature. The results indicated that profiles of endogenous polar metabolites covaried with at most 49 contaminants. The authors identified up to 52% of detected contaminants as not significantly covarying with changes in endogenous metabolites, suggesting they likely were not eliciting measurable impacts at these sites. This represents a first step in screening for the biological relevance of detected contaminants by shortening lists of contaminants potentially affecting these sites. Such information may allow risk assessors to prioritize contaminants and focus toxicity testing on the most biologically relevant contaminants.

URLs/Downloads:

http://onlinelibrary.wiley.com/doi/10.1002/etc.3409/abstract   Exit

Record Details:

Record Type: DOCUMENT (JOURNAL/PEER REVIEWED JOURNAL)
Product Published Date: 10/03/2016
Record Last Revised: 02/28/2017
OMB Category: Other
Record ID: 335537

Organization:

U.S. ENVIRONMENTAL PROTECTION AGENCY

OFFICE OF RESEARCH AND DEVELOPMENT

NATIONAL EXPOSURE RESEARCH LABORATORY

EXPOSURE METHODS & MEASUREMENT DIVISION