Science Inventory

Simulating the phase partitioning of NH3, HNO3, and HCl with size-resolved particles over northern Colorado in winter

Citation:

Kelly, J., K. Baker, Chris Nolte, S. Napelenok, W. Keene, AND A. Pszenny. Simulating the phase partitioning of NH3, HNO3, and HCl with size-resolved particles over northern Colorado in winter. ATMOSPHERIC ENVIRONMENT. Elsevier Science Ltd, New York, NY, 131:67-77, (2016).

Impact/Purpose:

The National Exposure Research Laboratory (NERL) Atmospheric Modeling and Analysis Division (AMAD) conducts research in support of EPA mission to protect human health and the environment. AMAD research program is engaged in developing and evaluating predictive atmospheric models on all spatial and temporal scales for forecasting the air quality and for assessing changes in air quality and air pollutant exposures, as affected by changes in ecosystem management and regulatory decisions. AMAD is responsible for providing a sound scientific and technical basis for regulatory policies based on air quality models to improve ambient air quality. The models developed by AMAD are being used by EPA, NOAA, and the air pollution community in understanding and forecasting not only the magnitude of the air pollution problem, but also in developing emission control policies and regulations for air quality improvements.

Description:

Numerical modeling of inorganic aerosol processes is useful in air quality management, but comprehensive evaluation of modeled aerosol processes is rarely possible due to the lack of comprehensive datasets. During the Nitrogen, Aerosol Composition, and Halogens on a Tall Tower (NACHTT) campaign in February and March 2011, the phase partitioning of soluble trace gases with size-resolved particles and related meteorological conditions were measured continuously at a site in Colorado about 33 km north of Denver. These size-resolved measurements of particulate SO42−, NH4+, NO3−, Cl−, Na+, Ca2+, Mg2+, and K+ and inorganic gases are used here to assess the ability of a continental U.S. modeling platform to simulate the gas-particle partitioning of NH3, HNO3, and HCl at this location. Modeling is based on the Community Multiscale Air Quality (CMAQ) model with 12 km horizontal resolution. Baseline, sensitivity, and source apportionment simulations are conducted to fully characterize the model predictions. Considering the limitations in representing regional terrain features in the national 12 km modeling, predictions agree reasonably well with measured concentrations and gas-particle partitioning at this location. However, the median sum of NH4+ and NH3 is underpredicted in the baseline simulation by a factor of four suggesting a need for improved bottom-up NH3 emissions inventories in this area. The median sum of Cl− and HCl is underpredicted by a factor of 2.8, while levels of Ca2+, Mg2+, and K+ are overpredicted. Improvements in windblown and fugitive dust emissions may improve and/or better constrain these predictions. Mass size distributions for inorganic particle constituents are generally simulated well, although the modeled fine particle mode is shifted to slightly larger diameters relative to measurements. Source apportionment modeling estimates of source sector and boundary contributions to air quality at the site are provided.

Record Details:

Record Type:DOCUMENT( JOURNAL/ PEER REVIEWED JOURNAL)
Product Published Date:02/04/2016
Record Last Revised:04/27/2016
OMB Category:Other
Record ID: 312673