Science Inventory

Taxonomic applicability of inflammatory cytokines in adverse outcome pathway (AOP) development

Citation:

Angrish, M., J. Pleil, M. Stiegel, M. Madden, Ginger Moser, AND D. Herr. Taxonomic applicability of inflammatory cytokines in adverse outcome pathway (AOP) development. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH - PART A: CURRENT ISSUES. Taylor & Francis, Inc., Philadelphia, PA, 79(4):184-196, (2016).

Impact/Purpose:

The National Exposure Research Laboratory’s (NERL’s) Human Exposure and Atmospheric Sciences Division (HEASD) conducts research in support of EPA’s mission to protect human health and the environment. HEASD’s research program supports Goal 1 (Clean Air) and Goal 4 (Healthy People) of EPA’s strategic plan. More specifically, our division conducts research to characterize the movement of pollutants from the source to contact with humans. Our multidisciplinary research program produces Methods, Measurements, and Models to identify relationships between and characterize processes that link source emissions, environmental concentrations, human exposures, and target-tissue dose. The impact of these tools is improved regulatory programs and policies for EPA.

Description:

Cytokines, low-molecular-weight messenger proteins that act as intercellular immunomodulatory signals, have become a mainstream preclinical marker for assessing the systemic inflammatory response to external stressors. The challenge is to quantitate from healthy subjects cytokine levels that are below or at baseline and relate those dynamic and complex cytokine signatures of exposures with the inflammatory and repair pathways. Thus, highly sensitive, specific, and precise analytical and statistical methods are critically important. Investigators at the U.S. Environmental Protection Agency (EPA) have implemented advanced technologies and developed statistics for evaluating panels of inflammatory cytokines in human blood, exhaled breath condensate, urine samples, and murine biological media. Advanced multiplex, bead-based, and automated analytical platforms provided sufficient sensitivity, precision, and accuracy over the traditional enzyme-linked immunosorbent assay (ELISA). Thus, baseline cytokine levels can be quantified from healthy human subjects and animals and compared to an in vivo exposure response from an environmental chemical. Specifically, patterns of cytokine responses in humans exposed to environmental levels of ozone and diesel exhaust, and in rodents exposed to selected pesticides (such as fipronil and carbaryl), were used as case studies to generally assess the taxonomic applicability of cytokine responses. The findings in this study may aid in the application of measureable cytokine markers in future adverse outcome pathway (AOP)-based toxicity testing. Data from human and animal studies were coalesced and the possibility of using cytokines as key events (KE) to bridge species responses to external stressors in an AOP-based framework was explored.

URLs/Downloads:

http://www.tandfonline.com/doi/full/10.1080/15287394.2016.1138923   Exit

Record Details:

Record Type: DOCUMENT (JOURNAL/PEER REVIEWED JOURNAL)
Product Published Date: 02/25/2016
Record Last Revised: 04/12/2016
OMB Category: Other
Record ID: 311785

Organization:

U.S. ENVIRONMENTAL PROTECTION AGENCY

OFFICE OF RESEARCH AND DEVELOPMENT

NATIONAL EXPOSURE RESEARCH LABORATORY

HUMAN EXPOSURE AND ATMOSPHERIC SCIENCES DIVISION

METHODS DEVELOPMENT & APPLICATION BRANCH