Science Inventory

WASTE-TO-RESOURCE: NOVEL MEMBRANE SYSTEMS FOR SAFE AND SUSTAINABLE BRINE MANAGEMENT

Impact/Purpose:

Advanced membrane separation processes such as membrane distillation (MD) and electrodialysis (ED) will be used to facilitate recovery of unconventional impaired water resources and enable tailored water reuse, in which water of different types can be reused beneficially for different applications. ED and MD have the potential to operate at or above saturation concentrations, but the mechanisms of heat and mass transport and membrane fouling and scaling (and their reversibility) must be further explored. To address the limitations of ED and MD, this project will elucidate scaling and fouling mechanisms and optimize system performance of these processes and their hybrids.

Description:

Decentralized waste-to-reuse systems will be optimized to maximize resource and energy recovery and minimize chemicals and energy use. This research will enhance fundamental knowledge on simultaneous heat and mass transport through membranes, lower process costs, and further address the range of treatment of hybrid and individual membrane processes. Results from the life cycle and cost assessment as well as the design program will have an impact on promoting the use of technologies in new applications.

Potential to Further Environmental/Human Health Protection
This research can aid in transforming how water and other natural resources are managed effectively. Discharge of high salinity waters, which can lead to ecosystem damage, surface and ground water contamination and land consumption, will be mitigated with the proposed systems. Optimization of these processes ultimately will aid in recovering valuable mineral resources for beneficial use and in supplying a low-cost, safe and sustainable water source that broadly is accessible to developed and advancing countries.

Record Details:

Record Type:PROJECT( ABSTRACT )
Start Date:08/01/2012
Completion Date:07/31/2015
Record ID: 259705