Science Inventory

METABOLISM OF PBDES IN FATHEAD MINNOWS (PIMEPHALES PROMELAS) AND EFFECTS ON THYROID REGULATION

Impact/Purpose:

Polybrominated diphenyl ethers (PBDEs) are flame-retardant chemicals added to consumer products such as furniture foam, carpets, car seats, and electronics to reduce their flammability. PBDEs are released into the environment through numerous pathways, and they are now environmentally ubiquitous. This contamination is highest in people and wildlife in North America. Evidence suggests that PBDEs may be neurodevelopmental toxins. They also perturb the endocrine system of vertebrates by impairing thyroid function, which plays a key role in growth, development, and metabolism of all vertebrates. Core objectives of this research are to determine how young and adult fish, as important indicators of overall environmental health, are metabolizing PBDEs to more persistent, bioavailable, and potentially toxic metabolites, and how these compounds may disrupt fish thyroid regulation.

Synopsis:

Polybrominated diphenyl ethers (PBDEs) are flame-retardant chemicals added to consumer products such as furniture, car seats, and electronics to reduce their flammability. They are now widespread contaminants in both living and non-living parts of the environment. The core questions I am seeking to answer center on determining: 1) how young and adult fish are breaking down PBDEs to more persistent and toxic products; and 2) how these compounds are potentially disrupting the fish thyroid system.

Polybrominated diphenyl ethers (PBDEs) are flame-retardant chemicals added to consumer products such as furniture foam, carpets, car seats, and electronics to reduce their flammability. PBDEs are released into the environment through numerous pathways, and they are now environmentally ubiquitous. This contamination is highest in people and wildlife in North America. Evidence suggests that PBDEs may be neurodevelopmental toxins. They also perturb the endocrine system of vertebrates by impairing thyroid function, which plays a key role in growth, development, and metabolism of all vertebrates. Core objectives of this research are to determine how young and adult fish, as important indicators of overall environmental health, are metabolizing PBDEs to more persistent, bioavailable, and potentially toxic metabolites, and how these compounds may disrupt fish thyroid regulation.

Synopsis:

Polybrominated diphenyl ethers (PBDEs) are flame-retardant chemicals added to consumer products such as furniture, car seats, and electronics to reduce their flammability. They are now widespread contaminants in both living and non-living parts of the environment. The core questions I am seeking to answer center on determining: 1) how young and adult fish are breaking down PBDEs to more persistent and toxic products; and 2) how these compounds are potentially disrupting the fish thyroid system.

Description:

PBDE effects on fish and other wildlife continue to be poorly understood, and this research will contribute to filling this data gap. It will increase our understanding of PBDE metabolic pathways and mechanisms of thyroid dysfunction in fish exposed to this important class of contaminants. Substantial differences in the biotransformation of PBDEs have been observed between mammals and fish. While the reductive debromination of PBDEs to potentially more persistent and bioactive congeners appears to be a major metabolic pathway in fish, the involvement and role of specific enzyme systems are largely unknown. This will be the first research to more clearly address why there appear to be substantial differences between how mammals and fish metabolize PBDEs. Moreover, DI-catalyzed metabolism of an environmental contaminant would be a novel pathway not observed previously in vertebrates. By examining PBDE metabolism across different life-stages, this research will help to elucidate whether early life-stages of fish may be especially sensitive to these contaminants. Finally, work under this project will further our understanding of PBDE effects across different levels of the fish thyroid system, including their potential to alter peripheral thyroid hormone levels, thyroid hormone-regulated gene transcription and metabolic activity, and thyroid follicle morphology.

Potential to Further Environmental/Human Health Protection:

Data collected under this research project will help to inform decision-making to balance the benefits gained from the use of PBDEs with their potential to cause adverse effects in sensitive wildlife populations and humans. Because the thyroid system is highly conserved across vertebrates, results of this work could have broader applications to elucidate PBDE effects on human health. Finally, this PBDE effects research will combine the use of chemical, biochemical, sub-cellular, histological, and molecular assays and techniques. This type of integrative approach may serve as a useful model for detecting contaminant impacts among wild fish populations and for evaluating the potential for other contaminants to cause thyroid disruption.

Record Details:

Record Type:PROJECT( ABSTRACT )
Start Date:08/01/2010
Completion Date:07/31/2013
Record ID: 249570