Science Inventory

OPTIMIZING THE BIOSAND FILTER FOR DRINKING WATER TREATMENT IN DEVELOPING COUNTRIES

Impact/Purpose:

More than one in six people worldwide, the equivalent of 894 million people, do not have access to safe drinking water. The concrete biosand filter (BSF) is an attractive water treatment option in developing countries because it produces high quality drinking water, is durable, and is easy to use and maintain. The filters have a manufacturing cost ranging from $10-30 USD, and while there are no other costs for consumables or maintenance, the BSF can still be too costly for some of the poorest households in the developing world. In addition, the size and weight of the concrete filter make it cumbersome and difficult to transport beyond the initial installation site. This research will test the hypothesis that biosand filtration can be effective with smaller, less expensive units in order to more sustainably meet the needs of a larger global market.

Description:

Results from this work will identify whether the smaller, cheaper bucket BSFs can produce drinking water that is comparable in quality to that produced by the CAWST-modified concrete BSF. Making BSF technology more accessible to a broader population (by making the technology more affordable and user-friendly) will reduce the incidence of waterborne diarrheal disease, increase the productivity and earning capacity of the average household, and help households and communities break the cycle of sickness and poverty which currently plagues billions of people worldwide.

Record Details:

Record Type:PROJECT( ABSTRACT )
Start Date:08/15/2010
Completion Date:08/14/2011
Record ID: 248938