Science Inventory

Contributions of Biogenic and Anthropogenic Hydrocarbons to Secondary Organic Aerosol during 2006 in Research Triangle Park, NC

Citation:

OFFENBERG, J. H., M. LEWANDOWSKI, M. JAOUI, AND T. E. KLEINDIENST. Contributions of Biogenic and Anthropogenic Hydrocarbons to Secondary Organic Aerosol during 2006 in Research Triangle Park, NC. AEROSOL AND AIR QUALITY RESEARCH . Chinese Association for Aerosol Research in Taiwan, , Taiwan, Province Of China, 11(2):99-108, (2011).

Impact/Purpose:

The National Exposure Research Laboratory′s (NERL) Human Exposure and Atmospheric Sciences Division (HEASD) conducts research in support of EPA′s mission to protect human health and the environment. HEASD′s research program supports Goal 1 (Clean Air) and Goal 4 (Healthy People) of EPA′s strategic plan. More specifically, our division conducts research to characterize the movement of pollutants from the source to contact with humans. Our multidisciplinary research program produces Methods, Measurements, and Models to identify relationships between and characterize processes that link source emissions, environmental concentrations, human exposures, and target-tissue dose. The impact of these tools is improved regulatory programs and policies for EPA.

Description:

A recently developed, organic tracer-based method was used to estimate the secondary contributions of biogenic and anthropogenic precursor hydrocarbons to ambient organic carbon concentrations in PM2.5 during 2006 in Research Triangle Park, North Carolina, USA. Forty-six ambient PM2.5 samples were collected on a one in six schedule and analyzed for (1) secondary organic aerosol tracer compounds, and (2) levoglucosan, a compound used as a tracer for biomass burning. For isoprene, α-pinene, β-caryophyllene, and toluene, the secondary contributions to ambient organic carbon concentrations (OC) were estimated using measured tracer concentrations and previously established, laboratory-determined mass fractions. The estimates show secondary formation from these four hydrocarbons contributes up to 55% of the ambient organic carbon concentrations (Julian day 197) when OC was 5.98 μg C m3. The relative contributions are highly temperature dependent; estimates of particulate carbon from isoprene and α-pinene precursors peaked during the warmest days, and represented up to 40% and 10% of the measured OC, respectively (Julian days 197 and 191). Conversely, biomass burning represented up to 21% of the organic carbon concentrations on the coldest day sampled, Julian day 329, while contributions of secondary organic carbon from these four precursor hydrocarbons remained low at 4% of the measured 2.55 μg C m3 OC.

Record Details:

Record Type:DOCUMENT( JOURNAL/ PEER REVIEWED JOURNAL)
Product Published Date:04/01/2011
Record Last Revised:03/17/2011
OMB Category:Other
Record ID: 215166