Science Inventory

Impact/Purpose:

variety of conditions, most laboratory and field projects have been conducted at TCE concentrations of 100 mg/L or less. However near NAPL sources, concentrations of chlorinated aliphatic hydrocarbons approach their solubilities (>1,000 mg/L for TCE and >150 mg/L for PCE). A consortium will be developed and characterized with the ability to reductively dechlorinate high concentrations of TCE to stoichiometric quantities of ethylene. By understanding the factors affecting reductive dechlorination kinetics, we will be better able to optimize the process. This project will prove useful for the remediation of chlorinated aliphatic compounds in the NAPL source zone.

Objectives/Hypothesis:

The specific objectives of this project are to: (1) Develop a culture with the ability to reductively dechlorinate TCE to ethylene at very high concentrations (above 1,000 µM) and in the presence of DNAPL; (2) Characterize microbial growth and measure maximum substrate utilization rates and half velocity coefficients for successive dechlorinations of TCE to ethylene; (3) Characterize the microbial consortium by investigating molecular methods to evaluate the diversity of the mixed culture developed in the kinetic studies; (4) Provide kinetic information and cultures in support of the Project - "Development of the Push-Pull Test to Monitor the Bioaugmentation of Dehalogenating Cultures." The proposed Center will focus on the geochemical, biological, hydrological/mineralogical and engineering aspects of environmental problems associated with mining and mine wastes with the goal of developing new or improved methods or technologies that are cost effective and lead to clean ups that are protective of human health and the environment. A common theme among these environmental problems is contamination of all media (air, ground water, soil, sediments, and surface water) resulting from a hos variety of conditions, most laboratory and field projects have been conducted at TCE concentrations of 100 mg/L or less. However near NAPL sources, concentrations of chlorinated aliphatic hydrocarbons approach their solubilities (>1,000 mg/L for TCE and >150 mg/L for PCE). A consortium will be developed and characterized with the ability to reductively dechlorinate high concentrations of TCE to stoichiometric quantities of ethylene. By understanding the factors affecting reductive dechlorination kinetics, we will be better able to optimize the process. This project will prove useful for the remediation of chlorinated aliphatic compounds in the NAPL source zone.

Objectives/Hypothesis:

The specific objectives of this project are to: (1) Develop a culture with the ability to reductively dechlorinate TCE to ethylene at very high concentrations (above 1,000 µM) and in the presence of DNAPL; (2) Characterize microbial growth and measure maximum substrate utilization rates and half velocity coefficients for successive dechlorinations of TCE to ethylene; (3) Characterize the microbial consortium by investigating molecular methods to evaluate the diversity of the mixed culture developed in the kinetic studies; (4) Provide kinetic information and cultures in support of the Project - "Development of the Push-Pull Test to Monitor the Bioaugmentation of Dehalogenating Cultures." The proposed Center will focus on the geochemical, biological, hydrological/mineralogical and engineering aspects of environmental problems associated with mining and mine wastes with the goal of developing new or improved methods or technologies that are cost effective and lead to clean ups that are protective of human health and the environment. A common theme among these environmental problems is contamination of all media (air, ground water, soil, sediments, and surface water) resulting from a ho

Record Details:

Record Type:PROJECT( ABSTRACT )
Start Date:10/01/2001
Completion Date:09/30/2006