Science Inventory

Investigation of ammonia air-surface exchange processes in a deciduous montane forest in the southeastern U.S.


Walker, Johnt, X. Chen, D. Schwede, R. Daly, A. Djurkovic, D. Kirchgessner, C. Oishi, AND M. Puchalski. Investigation of ammonia air-surface exchange processes in a deciduous montane forest in the southeastern U.S. Presented at National Atmospheric Deposition Program Fall Meeting, Santa Fe, New Mexico, October 31 - November 04, 2016.


Parameterizations of soil and vegetation emission potentials in bidirectional NH3 flux models used by EPA for nitrogen deposition assessments are largely derived from experiments in European ecosystems. New parameterizations based on biogeochemical measurements in North American ecosystems may yield lower net NH3 deposition rates than previously estimated.


Recent assessments of atmospheric deposition in North America note the increasing importance of reduced (NHx = NH3 + NH4+) forms of nitrogen (N) relative to oxidized forms. This shift in in the composition of inorganic nitrogen deposition has both ecological and policy implications. Deposition budgets developed from inferential models applied at the landscape scale, as well as regional and global chemical transport models, indicate that NH3 dry deposition contributes a significant portion of inorganic N deposition in many areas. However, the bidirectional NH3 flux algorithms employed in these models have not been extensively evaluated for North American conditions (e.g, atmospheric chemistry, meteorology, biogeochemistry). Further understanding of the processes controlling NH3 air-surface exchange in natural systems is critically needed. Based on preliminary results from the Southern Appalachian Nitrogen Deposition Study (SANDS), this presentation examines processes of NH3 air-surface exchange in a deciduous montane forest at the Coweeta Hydrologic Laboratory in western North Carolina. A combination of measurements and modeling are used to investigate net fluxes of NH3 above the forest and sources and sinks of NH3 within the canopy and forest floor. Measurements of biogeochemical NH4+ pools are used to characterize emission potential and NH3 compensation points of canopy foliage (i.e., green vegetation), leaf litter, and soil and their relation to NH3 fluxes. Differences in bidirectional flux modeling results using generalized versus site-specific parameterizations of foliage versus soil processes are addressed along with recommendations for model improvements. Next steps for further processing of SANDS datasets are also discussed.


WALKER ET AL_NH3_V3.PDF   (PDF,NA pp, 1110.349 KB,  about PDF)

Record Details:

Product Published Date: 11/04/2016
Record Last Revised: 01/20/2017
OMB Category: Other
Record ID: 335106