Science Inventory

Bayesian Monte Carlo and Maximum Likelihood Approach for Uncertainty Estimation and Risk Management: Application to Lake Oxygen Recovery Model

Citation:

Chaudhary, A. AND M. Hantush. Bayesian Monte Carlo and Maximum Likelihood Approach for Uncertainty Estimation and Risk Management: Application to Lake Oxygen Recovery Model. WATER RESEARCH. Elsevier, AMSTERDAM, Netherlands, 108:301-311, (2017). https://doi.org/10.1016/j.watres.2016.11.012

Impact/Purpose:

The main objective of this paper is to characterize the uncertainty of a lake oxygen recovery model (Gelda et al., 1996) using the Bayesian Monte Carlo simulation and Maximum Likelihood estimation (BMCML) (Hantush and Chaudhary, 2014) and Markov Chain Monte Carlo technique methods and demonstrated robustness of BMCML to risk management. This information is of interest to Regional and Program Office decision makers, States, and local affected communities.

Description:

Model uncertainty estimation and risk assessment is essential to environmental management and informed decision making on pollution mitigation strategies. In this study, we apply a probabilistic methodology, which combines Bayesian Monte Carlo simulation and Maximum Likelihood estimation (BMCML) to calibrate a lake oxygen recovery model. We first derive an analytical solution of the differential equation governing lake-averaged oxygen dynamics as a function of time-variable wind speed. Statistical inferences on model parameters and predictive uncertainty are then drawn by Bayesian conditioning of the analytical solution on observed daily wind speed and oxygen concentration data obtained from an earlier study during two recovery periods on a eutrophic lake in upper state New York. The model is calibrated using oxygen recovery data for one year and statistical inferences were validated using recovery data for another year. Compared with essentially two-step, regression and optimization approach, the BMCML results are more comprehensive and performed relatively better in predicting the observed temporal dissolved oxygen levels (DO) in the lake. BMCML also produced comparable calibration and validation results with those obtained using popular Markov Chain Monte Carlo technique (MCMC) and is computationally simpler and easier to implement than the MCMC. Next, using the calibrated model, we derive an optimal relationship between liquid film-transfer coefficient for oxygen and wind speed and associated 95% confidence band, which are shown to be consistent with reported measured values at five different lakes. Finally, we illustrate the robustness of the BMCML to solve risk-based water quality management problems, showing that neglecting cross-correlations between parameters could lead to improper required BOD load reduction to achieve the compliance criteria of 5 mg/L.

URLs/Downloads:

https://doi.org/10.1016/j.watres.2016.11.012   Exit

http://dx.doi.org/10.1016/j.watres.2016.11.012   Exit

Record Details:

Record Type: DOCUMENT (JOURNAL/PEER REVIEWED JOURNAL)
Product Published Date: 01/01/2017
Record Last Revised: 05/11/2018
OMB Category: Other
Record ID: 335600