Science Inventory

Review of Abiotic Degradation of Chlorinated Solvents by Reactive Iron Minerals


He, Y., J. Wilson, C. Su, AND Rick Wilkin. Review of Abiotic Degradation of Chlorinated Solvents by Reactive Iron Minerals. GROUNDWATER MONITORING AND REMEDIATION. National Ground Water Association, Westerville, OH, , 57-75, (2015).


Submission to Ground Water Monitoring and Remediation.


Abiotic degradation of chlorinated solvents by reactive iron minerals such as iron sulfides, magnetite, green rust, and other Fe(II)-containing minerals has been observed in both laboratory and field conditions. These reactive iron minerals typically form under iron and sulfate reducing conditions which are commonly found in permeable reactive barriers (PRBs), enhanced reductive dechlorination (ERD) treatment locations, landfills, and aquifers that are naturally reducing. The objective of this review is to synthesize current understanding of abiotic degradation of chlorinated solvents, with special focus on how abiotic processes relate to groundwater remediation. Degradation of chlorinated solvents by reactive minerals can proceed through reductive elimination, hydrogenolysis, hydrolysis, and coupling reactions. Degradation products of abiotic reactions depend on degradation pathways and parent compounds. Some degradation products (e.g., acetylene) can serve as a signature product for demonstrating abiotic reactions. Laboratory and field studies show that various minerals have a range of reactivity toward chlorinated solvents. A general trend of mineral reactivity can be approximated as follows: disordered FeS > FeS > FeS2 > sorbed Fe2+ > green rust = magnetite > biotite = vermiculite.Reaction kinetics are influenced by factors such as pH, natural organic matter (NOM), coexisting metal ions, and sulfide concentration in the system. In practice, abiotic reactions can be engineered to stimulate reactive mineral formation for groundwater remediation. Under appropriate site geochemical conditions, abiotic reactions can occur naturally, and can be incorporated into remedial strategies such as enhanced monitored natural attenuation.

Record Details:

Product Published Date: 06/22/2015
Record Last Revised: 06/10/2016
OMB Category: Other
Record ID: 318450