Science Inventory

An Isotopic view of water and nitrogen transport through the vadose zone.

Citation:

Brooks, J. Renée, S. Pearlstein, Steve Hutchins, Bart Faulkner, W. Rugh, K. Willard, R. Coulombe, AND J. Compton. An Isotopic view of water and nitrogen transport through the vadose zone. American Geophysical Union Annual Meeting, New Orleans, LA, December 11 - 15, 2017.

Impact/Purpose:

Groundwater nitrate contamination affects thousands of households in Oregon’s southern Willamette Valley and many more across the Pacific Northwest. The southern Willamette Valley Groundwater Management Area (SWV GWMA) was established in 2004 due to nitrate levels in the groundwater exceeding the human health standard of 10 mg nitrate-N L-1. Much of the nitrogen (N) inputs to the GWMA comes from agricultural fertilizers, and thus efforts to reduce N inputs to groundwater are focused upon improving N management. However, the effectiveness of these improvements on groundwater quality is unclear because of the complexity of nutrient transport through the vadose zone and long groundwater residence times. Our objective was to focus on vadose zone transport and understand the dynamics and timing of N and water movement below the rooting zone in relation to N management and water inputs. Stable isotopes are a powerful tool for tracking water movement, and understanding N transformations within the vadose zone. In partnership with local farmers and state agencies, we established lysimeters and groundwater wells in multiple agricultural fields in the GWMA, and have monitored nitrate, nitrate isotopes, and water isotopes weekly for multiple years. We are exploring how these results can be incorporated into practical understanding of the impacts of N management on groundwater inputs.

Description:

Groundwater nitrate contamination affects thousands of households in Oregon’s southern Willamette Valley and many more across the Pacific Northwest. The southern Willamette Valley Groundwater Management Area (SWV GWMA) was established in 2004 due to nitrate levels in the groundwater exceeding the human health standard of 10 mg nitrate-N L-1. Much of the nitrogen (N) inputs to the GWMA comes from agricultural fertilizers, and thus efforts to reduce N inputs to groundwater are focused upon improving N management. However, the effectiveness of these improvements on groundwater quality is unclear because of the complexity of nutrient transport through the vadose zone and long groundwater residence times. Our objective was to focus on vadose zone transport and understand the dynamics and timing of N and water movement below the rooting zone in relation to N management and water inputs. Stable isotopes are a powerful tool for tracking water movement, and understanding N transformations within the vadose zone. In partnership with local farmers and state agencies, we established lysimeters and groundwater wells in multiple agricultural fields in the GWMA, and have monitored nitrate, nitrate isotopes, and water isotopes weekly for multiple years. Our results indicate that vadose zone transport is highly complex, and the residence time of water collected in lysimeters was much longer than expected. While input precipitation water isotopes were highly variable over time, lysimeter water isotopes were surprisingly consistent, more closely resembling long-term precipitation isotope means rather than recent precipitation isotopic signatures. However, some particularly large precipitation events with unique isotopic signatures revealed high spatial variability in transport, with some lysimeters showing greater proportions of recent precipitation inputs than others. In one installation where we have groundwater wells and lysimeters at multiple depths, nitrate/nitrite concentrations decrease with depth. Within a depth, lower N concentrations are associated with higher 15N values, indicating some denitrification is associated with the variation in concentration. However, these relationships show spatial and temporal complexity not explained by simple denitrification processes. We are exploring how these vadose zone complexities can be incorporated into practical understanding of the impacts of N management on groundwater inputs.

Record Details:

Record Type: DOCUMENT (PRESENTATION/SLIDE)
Product Published Date: 12/15/2017
Record Last Revised: 01/16/2018
OMB Category: Other
Record ID: 339374