Science Inventory

OZONE PRODUCTION EFFICIENCY AND NOX DEPLETION IN AN URBAN PLUME: INTERPRETATION OF FIELD OBSERVATIONS AND IMPLICATIONS FOR EVALUATING O3-NOX-VOC SENSITIVITY

Citation:

Zaveri, R. A., C. Berkowitz, L. I. Kleinman, R. Springston, P. V. Doskey, W A. Lonneman, AND C. W. Spicer. OZONE PRODUCTION EFFICIENCY AND NOX DEPLETION IN AN URBAN PLUME: INTERPRETATION OF FIELD OBSERVATIONS AND IMPLICATIONS FOR EVALUATING O3-NOX-VOC SENSITIVITY. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES 108(D14):ACH12-1 to ACH12-23, (2003).

Impact/Purpose:

(1) To provide up-to-date VOC source profiles for EPA's revitalized SPECIATE source profile library, through gas chromatographic (GC) analysis of "samples of opportunity" acquired in HEASD-supported field studies.

(2) To provide VOC measurement support to HEASD-sponsored field studies.

Description:

Ozone production efficiency (OPE) can be defined as the number of ozone (O3) molecules photochemically produced by a molecule of NOx (NO + NO2) before it is lost from the NOx - O3 cycle. Here, we consider observational and modeling techniques to evaluate various operational definitions of OPEs using aircraft and surface measurements taken as part of the 1999 Southern Oxidant Study field campaign in Nashville, Tennessee. A key tool in our analysis is a Lagrangian box model, which is used to quantitatively describe the effects of emissions, dilution, dry deposition, and photochemistry in an urban air parcel as it was advected downwind. After evaluating the model using the observed downwind concentrations of several key species, we show that the modeled NOx oxidation and O3 production rates as well as the associated instantaneous and cumulative OPEs depend on the time of day and the photochemical age of the air parcel. The observation-based OPEs are found to be consistent with the modeled values with the expected biases. A model sensitivity study suggests that downwind O3 concentrations in the Nashville plume are more sensitive to NOx emissions than anthropogenic VOC emissions. Because the OPE exhibits a nonlinear dependence on emissions and meteorological effects, it would be difficult to rely only on observations to map out the non-linear response of O3 to a wide span of NOx and VOC emission changes. Properly constrained and well-evaluated models using a variety of observations are therefore necessary to reliably predict O3-NOx-VOC sensitivity for designing effective O3 control strategies.

The U.S. Environmental Protection Agency through its Office of Research and Development partially funded and collaborated in the research described here under contract CQ829757 to the National Caucus and Center on Black Aged.

Record Details:

Record Type: DOCUMENT (JOURNAL/PEER REVIEWED JOURNAL)
Product Published Date: 07/31/2003
Record Last Revised: 07/25/2008
OMB Category: Other
Record ID: 81466

Organization:

U.S. ENVIRONMENTAL PROTECTION AGENCY

OFFICE OF RESEARCH AND DEVELOPMENT

NATIONAL EXPOSURE RESEARCH LABORATORY

HUMAN EXPOSURE AND ATMOSPHERIC SCIENCES DIVISION

ENVIRONMENTAL CHARACTERIZATION & APPORTIONMENT BRANCH