Science Inventory



Daughton, C G. PHARMACEUTICALS AND PERSONAL CARE PRODUCTS (PPCPS) AS ENVIRONMENTAL POLLUTANTS: POLLUTION FROM PERSONAL ACTIONS. Presented at Regional Science Liaison/Hazardous Substances Technical Liaison Meeting, Las Vegas, NV, February 26, 2004.


The research focused on in the subtasks is the development and application of state-of the-art technologies to meet the needs of the public, Office of Water, and ORD in the area of Water Quality. Located In the subtasks are the various research projects being performed in support of this Task and more in-depth coverage of each project. Briefly, each project's objective is stated below.

Subtask 1: To integrate state-of-the-art technologies (polar organic chemical integrative samplers, advanced solid-phase extraction methodologies with liquid chromatography/electrospray/mass spectrometry) and apply them to studying the sources and fate of a select list of PPCPs. Application and improvement of analytical methodologies that can detect non-volatile, polar, water-soluble pharmaceuticals in source waters at levels that could be environmentally significant (at concentrations less than parts per billion, ppb). IAG with USGS ends in FY05. APM 20 due in FY05.

Subtask 2: Coordination of interagency research and public outreach activities for PPCPs. Participate on NSTC Health and Environment subcommittee working group on PPCPs. Web site maintenance and expansion, invited technical presentations, invited articles for peer-reviewed journals, interviews for media, responding to public inquiries.

Subtask 3: To apply state-of-the-art environmental forensic techniques to the recognition and characterization of emerging pollutants in the aquatic environment. There is a need for high sensitivity and for a powerful method of structural characterization, advanced mass spectrometric and chromatographic techniques to be employed to meet the challenge of emerging pollutants, including pharmaceuticals and personal care products, agents of sabotage, and explosives. Ongoing efforts continue to identify previously unrecognized pollutants from a range of problematic samples having importance to regional and state contacts.

Subtask 4: To provide the Agency with a set of practical analytical methods for the selective and sensitive determination of selenium species (organic, inorganic, volatile and non volatile forms) in multiple media to accurately assess and if necessary control the risk of selenium exposure to organisms. This includes development of optimal extraction, digestion, separation and detection approaches.

Subtask 5: To develop and apply an analytical method that can extract and detect synthetic musks. The extent of exposure may be determined by measuring levels of synthetic musks from their potential source (communal sewage effluent). This subtask ends in FY05 with the deliverable of APM 21. Future applications to biosolids will be covered in subtask 6.

Subtask 6: Application, and improvement, of previously in-house developed sensitive, robust, and green, methodologies regarding the use of urobilin and sterols as a possible markers of sewage contamination.

Subtask 7: Adaptation and improvement of previously developed in-house methods, for PPCPs (e.g., antibiotics and musks) to solid materials (e.g. biosolids, sediments).

Subtask 8: Study of the presence of personal care products, incombustible organic compounds from the direct-piping of small engines exhaust in Lake Tahoe, and lake deposition of airborne pollutants from industrial activity


The occurrence of pharmaceuticals and personal care products (PPCPs) as trace environmental pollutants is a multifaceted issue whose scope of concerns continues to expand. PPCPs comprise thousands of distinct chemicals from numerous therapeutic and consumer classes. They typically occur as trace environmental pollutants (primarily in surface but also in ground waters) as a result of their widespread, continuous, combined usage in a broad range of human and veterinary therapeutic activities and practices. With respect to the risk-assessment paradigm, the growing body of published work has focused primarily on the origin and occurrence of these substances. Comparatively less is known about human and ecological exposure, and even less about the documented or potential hazards associated with trace exposure to these anthropogenic substances, many of which are highly bioactive and perpetually present in many aquatic locales. The continually growing, worldwide importance of freshwater resources underscores the need for ensuring that any aggregate or cumulative impacts on water supplies and resultant potential for human or ecological exposure be minimized.

Of the many facets involved in this complex issue, that of sources/origins and environmental occurrence is the better understood end of the larger spectrum. The potential for adverse ecological or human health effects (especially from long-term, combined exposure to multiple xenobiotics at low concentrations) is the largest unknown.

Beginning in the late 1990's, the Environmental Chemistry Branch (ECB) at NERL-Las Vegas became involved in several international activities involving PPCPs. This initial work has now evolved into a lead role at EPA. ECB's work is captured on the Agency's PPCPs web site (, which is the only comprehensive site in the world devoted to this topic. The web site serves as a central point of access and major public outreach tool for a wide array of materials and information.

ECB's role serves in part to catalyze research, and to foster collaborative efforts. In the span of the last 4 years, what had originally been a predominantly European-led effort, now involves researchers from other federal agencies (esp. CDC, FDA USDA, and USGS), other countries (e.g., Health Canada), and universities (e.g., EPA STAR grants targeted to PPCPs).

Record Details:

Product Published Date:02/26/2004
Record Last Revised:06/06/2005
Record ID: 76663