Science Inventory

Sunlight-mediated inactivation of health-relevant microorganisms in water: a review of mechanisms and modeling approaches

Citation:

Nelson, K., A. Boehm, R. Davies-Colley, M. Dodd, T. Kohn, K. Linden, Y. Liu, P. Maraccini, K. McNeill, W. Mitch, T. Nguyen, K. Parker, R. Rodriguez, L. Sassoubre, A. Silverman, K. Wigginton, AND R. Zepp. Sunlight-mediated inactivation of health-relevant microorganisms in water: a review of mechanisms and modeling approaches. Environmental Science: Processes & Impacts. RSC Publishing, Cambridge, Uk, 20(8):1089-1122, (2018). https://doi.org/10.1039/C8EM00047F

Impact/Purpose:

The goal of this paper is to review the tremendous progress that has been made in the last several decades in understanding the mechanisms by which sunlight damages health relevant microorganisms in water. Based on this understanding, we present a mechanistic approach for modeling inactivation, discuss the implications of sunlight-mediated inactivation for common applications in the field of water quality, and identify knowledge gaps and research priorities. The review focuses on mechanisms that occur in both viruses and bacteria, including indicator organisms and human pathogens, because sunlight inactivation is most relevant and best understood for these two classes of microorganisms. Short sections review sunlight inactivation of protozoan cysts and antibiotic resistance genes.

Description:

Health-relevant microorganisms present in natural surface waters and engineered treatment systems that are exposed to sunlight can be inactivated by a complex set of interacting mechanisms. The net impact of sunlight depends on the solar spectral irradiance, the susceptibility of the specific microorganism to each mechanism, and the water quality; inactivation rates can vary by orders of magnitude depending on the organism and environmental conditions. Natural organic matter (NOM) has a large influence, as it can attenuate radiation and thus decrease inactivation by endogenous mechanisms. Simultaneously NOM sensitizes the formation of reactive intermediates that can damage microorganisms via exogenous mechanisms. To accurately predict inactivation and design engineered systems that enhance solar inactivation, it is necessary to model these processes, although some details are not yet sufficiently well understood. In this critical review, we summarize the photo-physics, -chemistry, and -biology that underpin sunlight-mediated inactivation, as well as the targets of damage and cellular responses to sunlight exposure. Viruses that are not susceptible to exogenous inactivation are only inactivated if UVB wavelengths (280–320 nm) are present, such as in very clear, open waters or in containers that are transparent to UVB. Bacteria are susceptible to slightly longer wavelengths. Some viruses and bacteria (especially Gram-positive) are susceptible to exogenous inactivation, which can be initiated by visible as well as UV wavelengths. We review approaches to model sunlight-mediated inactivation and illustrate how the environmental conditions can dramatically shift the inactivation rate of organisms. The implications of this mechanistic understanding of solar inactivation are discussed for a range of applications, including recreational water quality, natural treatment systems, solar disinfection of drinking water (SODIS), and enhanced inactivation via the use of sensitizers and photocatalysts. Finally, priorities for future research are identified that will further our understanding of the key role that sunlight disinfection plays in natural systems and the potential to enhance this process in engineered systems.

Record Details:

Record Type:DOCUMENT( JOURNAL/ PEER REVIEWED JOURNAL)
Product Published Date:09/01/2018
Record Last Revised:10/05/2018
OMB Category:Other
Record ID: 342664