Science Inventory

Social hierarchy modulates responses of fish exposed to contaminants of emerging concern


Ivanova, J., S. Zhang, R. Wang, AND H. Schoenfuss. Social hierarchy modulates responses of fish exposed to contaminants of emerging concern. PLoS ONE . Public Library of Science, San Francisco, CA, 12(10):e0186807, (2017).


This study aims to determine if male fathead minnow population is structured due to social status, and if so, the impact of endocrine-disrupting chemicals and implications in toxicity testing.


Many organisms, including the fathead minnow (Pimephales promelas), a toxicological model organism, establish social hierarchies. The social rank of each male in a population is under the control of the hypothalamic-pituitary-gonadal (HPG) axis mainly through regulation of circulating androgen concentrations, which in turn drive the expression of secondary sex characteristics (SSCs). As dominant and subordinate males in an exposure study are initially under different physiological conditions (i.e., differing plasma androgen concentrations), we proposed that they belong to different subpopulations in the context of exposure to compounds that may interact with the HPG axis. Using a meta-analysis of our data from several previously published studies, we corroborated the hypothesis that social status, as indicated by SSCs, results in distinct clusters (eigenvalues >0.8 explaining >80% of variability) with differential expression of plasma vitellogenin, a commonly used biomarker of exposure to contaminants of emerging concern (CEC). Furthermore, we confirmed our predictions that exposure to estrogenic CECs would homogenize plasma vitellogenin response (E1: cluster mean SSC values decreased to 4.33 and 4.86 relative to those of control; E2: decreased to 4.8 and 5.37) across the social hierarchy. In contrast, serotonin-specific reuptake inhibitors expand this response range (cluster mean SSC increased to 5.21 and 6.5 relative to those of control). Our results demonstrated that social hierarchies in male fathead minnows result in heterogeneous responses to chemical exposure. These results represent a cautionary note for the experimental design of single-sex exposure studies. We anticipate our study to be a starting point for the re-evaluation of toxicological data analyses in single sex exposure experiments.

URLs/Downloads:   Exit

Record Details:

Product Published Date: 10/19/2017
Record Last Revised: 11/06/2017
OMB Category: Other
Record ID: 338186