Science Inventory

“Modeling Trends in Aerosol Direct Radiative Effects over the Northern Hemisphere using a Coupled Meteorology-Chemistry Model”

Citation:

Mathur, R., J. Xing, C. Wei, AND C. Gan. “Modeling Trends in Aerosol Direct Radiative Effects over the Northern Hemisphere using a Coupled Meteorology-Chemistry Model”. Presented at 2013 Fall Meeting AGU, San Francisco, CA, December 09 - 13, 2013.

Impact/Purpose:

The National Exposure Research Laboratory (NERL) Atmospheric Modeling and Analysis Division (AMAD) conducts research in support of EPA mission to protect human health and the environment. AMAD research program is engaged in developing and evaluating predictive atmospheric models on all spatial and temporal scales for forecasting the air quality and for assessing changes in air quality and air pollutant exposures, as affected by changes in ecosystem management and regulatory decisions. AMAD is responsible for providing a sound scientific and technical basis for regulatory policies based on air quality models to improve ambient air quality. The models developed by AMAD are being used by EPA, NOAA, and the air pollution community in understanding and forecasting not only the magnitude of the air pollution problem, but also in developing emission control policies and regulations for air quality improvements

Description:

While aerosol radiative effects have been recognized as some of the largest sources of uncertainty among the forcers of climate change, the verification of the spatial and temporal variability of the magnitude and directionality of aerosol radiative forcing has remained challenging. A detailed investigation of the processes regulating aerosol distributions, their optical properties, and their radiative effects and verification of their simulated effects for past conditions relative to measurements is needed in order to build confidence in the estimates of the projected impacts arising from changes in both anthropogenic forcing and climate change. Anthropogenic emissions of primary aerosol and gaseous precursors have witnessed dramatic changes over the past two decades across the northern hemisphere. During the period 1990-2010, SO2 and NOx emissions across the US have reduced by about 66% and 50%, respectively, mainly due to Title IV of the U.S. Clean Air Act Amendments (CAA). In contrast, anthropogenic emissions have increased dramatically in many developing regions during this period. We conduct a systematic investigation of changes in anthropogenic emissions of primary aerosols and gaseous precursors over the past two decades, their impacts on trends and spatial heterogeneity in anthropogenic aerosol loading across the northern hemisphere troposphere, and subsequent impacts on regional radiation budgets. The coupled WRF-CMAQ model is applied for selected time periods spanning the period 1990-2010 over a domain covering the northern hemisphere and a nested finer resolution continental U.S. domain. The model includes detailed treatment of direct effects of aerosols on photolysis rates as well as on shortwave radiation. Additionally, treatment of aerosol indirect effects on clouds has also recently been implemented. A methodology is developed to consistently estimate U.S. emission inventories for the 20-year period accounting for air quality regulations as well as population trends, economic conditions, and technology changes in motor vehicles and electric power generation. Analysis of measurements of aerosol composition, radiation, and associated variables, over the past two decades will be presented which indicate significant reductions in the tropospheric aerosol burden as well as an increase in down-welling shortwave radiation at numerous sites across the U.S. Initial applications of the coupled WRF-CMAQ model for time-periods pre and post the implementation of CAA Title IV will be discussed and comparisons with measurements to assess the model’s ability to capture trends in aerosol burden, composition, and direct aerosol effects on surface shortwave radiation will be presented.

URLs/Downloads:

006981_MATHUR_POSTER_AGU2013_NEW.PDF   (PDF,NA pp, 948 KB,  about PDF)

Record Details:

Record Type: DOCUMENT (PRESENTATION/POSTER)
Product Published Date: 12/09/2013
Record Last Revised: 10/22/2015
OMB Category: Other
Record ID: 308912

Organization:

U.S. ENVIRONMENTAL PROTECTION AGENCY

OFFICE OF RESEARCH AND DEVELOPMENT

NATIONAL EXPOSURE RESEARCH LABORATORY

ATMOSPHERIC MODELING DIVISION

AIR-SURFACE PROCESSES MODELING BRANCH