Science Inventory

THE ROLE OF NITROGEN IN CHROMOPHORIC AND FLUORESCENT DISSOLVED ORGANIC MATTER FORMATION

Citation:

BIERS, E. J., R. G. ZEPP, AND M. A. MORAN. THE ROLE OF NITROGEN IN CHROMOPHORIC AND FLUORESCENT DISSOLVED ORGANIC MATTER FORMATION. MARINE CHEMISTRY. Elsevier Science Ltd, New York, NY, 103(1-2):46-60, (2007).

Impact/Purpose:

The overall objective of this task is to develop quantitative relationships for assessing the vulnerability of aquatic ecosystems (freshwater and coastal) and their services to global change. The task will contribute experimental and modeling tools for assessments of the interactions of global climate and UV changes with coral reefs and selected watersheds and estuaries in the U.S. and Brazil These activities are contributing to two APGs in the ecosystems focus area of the Global Change Research Multiyear Plan: the 2008 APG (APG 2) on developing information and tools that managers will use in their decision-making about how to adapt to the effects of global change on aquatic ecosystems; and the 2010 APG (APG 3) on providing information and models that will support development of biocriteria for corals. One major task objective is to assess interactions of global warming and UV exposure that are contributing to the observed coral bleaching and disease. Our lab is working with scientists at the NHEERL Gulf Ecology Lab to characterize UV exposure and effects at several coral reef sites in the Florida Keys. This collaboration will contribute to one ERD APM in 2006 and three joint NERL-NHEERL APMs in the 2008 - 2010 period. Other research is examining the effects of changing climate and UV on microbial activity in waters close to beaches in the U.S. Work is being completed on the interactions of land use and climate changes with the ecological functioning of streams in watersheds of the southeastern U.S. The task also includes two sub-tasks that are funded mainly by funds-in IAGs. One sub-task funded by NASA involves research in central Brazil that is part of the Large Scale Biosphere Atmosphere Experiment (LBA). This work involves a close collaboration between EPA and a group of scientists from the Department of Ecology, University of Brasilia, Brazil. The objectives of this project are to assess the impacts of land use and climatic changes on soil nutrient cycles and microbiota, trace gas exchange and water quality in the Brazilian cerrado. Another sub-task funded by the Office of Naval Research is examining interactions between nitrogen and organic substances in aquatic ecosystems that produce the colored dissolved organic matter (CDOM) that controls penetration of solar UV radiation into coastal waters.

Description:

Microbial and photochemical processes affect chromophoric dissolved organic matter (CDOM) dynamics in the ocean. Some evidence suggests that dissolved nitrogen plays a role in CDOM formation, although this has received little systematic attention in marine ecosystems. Coastal seawater incubations were carried out in the presence of model dissolved organic nitrogen (DON: amino sugars and amino acids) and dissolved inorganic nitrogen (DIN) compounds to assess their role in biological and photochemical production of CDOM. For several of the dissolved N compounds, microbial processing resulted in a pulse of CDOM that was mainly labile, appearing and disappearing within 7 days. In contrast, a net loss of CDOM occurred when no N was added to the microbial incubations. The greatest net biological CDOM formation was found upon addition of amino sugars (formation of fluorescent, mostly labile CDOM) and tryptophan (formation of non-fluorescent, refractory CDOM). Photochemical formation of CDOM was only found with tryptophan, the one aromatic compound tested. This CDOM was highly fluorescent, with excitation-emission matrices (EEMs) resembling those of terrestrial, humic-like fluorophores. The heterogeneity in CDOM formation from this collection of labile N-containing compounds was surprising. These compounds are common components of biopolymers and humic substances in natural waters and likely to contribute to microbially- and photochemically-produced CDOM in coastal seawater.

Record Details:

Record Type: DOCUMENT (JOURNAL/PEER REVIEWED JOURNAL)
Product Published Date: 01/08/2007
Record Last Revised: 10/02/2007
OMB Category: Other
Record ID: 156846

Organization:

U.S. ENVIRONMENTAL PROTECTION AGENCY

OFFICE OF RESEARCH AND DEVELOPMENT

NATIONAL EXPOSURE RESEARCH LABORATORY

ECOSYSTEMS RESEARCH DIVISION

IMMEDIATE OFFICE