Science Inventory

Soil accumulation and chemical fractions of Cu in a large and long-term coastal apple orchard, North China

Citation:

Fu, C., C. Tu, H. Zhang, Y. Li, L. Li, Q. Zhou, K. Scheckel, AND Y. Luo. Soil accumulation and chemical fractions of Cu in a large and long-term coastal apple orchard, North China. Journal of Soils and Sediments. Springer-Verlag, BERLIN-HEIDELBERG, Germany, 20:3712-3721, (2020). https://doi.org/10.1007/s11368-020-02676-2

Impact/Purpose:

Thus, this study was conducted in a typically large and longterm coastal orchard area to further reveal the tendencies and spatial distributions of Cu accumulation and fractions. The objectives of this study were (i) to investigate the change of soil Cu concentration and partitioning in coastal orchards with different planting durations, (ii) to investigate the spatial distribution of soil Cu concentration and fractions in coastal orchards, and (iii) to understand the influence of soil properties on the availability and mobility of Cu in coastal orchard soil.

Description:

Purpose Coastal orchards, with greater humidity and precipitation, are favorable for fruit production, as well as mildew fungi development, thus becoming hot spots of Cu concentrations in soils due to the use of copper-based fungicides. However, little is known on the variation tendencies of Cu availability and mobility from these soils. This study aims to investigate the accumulation, spatial-temporal distribution, and chemical fractions of soil Cu in one of the largest coastal apple-producing area with over 40-year intensive cultivation in China. Materials and methods A total of 104 orchard and 31 farmland topsoil samples were collected from Jiaodong Peninsula, Shandong Province. The total Cu concentration (T-Cu) and major element components (MnO, TiO2, SiO2, Fe2O3, and Al2O3) in the soil were determined by X-ray fluorescence spectroscopy. Available Cu concentration (A-Cu) was extracted with HCl or DTPA. Chemical fractionations of Cu were determined via sequential extraction method. The variation tendencies of T-Cu, ACu, Cu available ratio (AR), and chemical fractions with planting duration in the orchards were explored while a cokriging method was selected to predict their spatial distributions. Moreover, Pearson’s correlation and multiple linear stepwise regressions were constructed to distinguish the vital factors in controlling Cu availability and mobility from these soils. Results and discussion The results showed that long-term application of Cu-containing fungicides had increased Cu concentrations in orchard soils (85.77 mg kg−1) 3.5 times higher than the background value (24.0 mg kg−1) of local agricultural soils, in which 23.8% existed in the available form. Cu in the weak acid-soluble fraction (F1, 5.0 ± 3.5 %), reducible fraction (F2, 24.7 ± 6.6%), and oxidizable fraction (F3, 18.5 ± 7.8%) in orchard soils increased significantly with increasing planting durations whereas the residual fraction (F4, 51.7 ± 15.4%) exhibited a reverse trend. Total content, available content, and chemical fractions of Cu showed strong spatial heterogeneity. The availability andmobility of Cu in orchard soils weremainly controlled by total Cu content, pH, and soil organic carbon. Conclusions Coastal orchards under warm and humid climate condition in China exhibited higher Cu input, along with acidification and rapid organic carbon turnover in the soils, eventually leading to large accumulation and high mobility of Cu in the soils.

Record Details:

Record Type:DOCUMENT( JOURNAL/ PEER REVIEWED JOURNAL)
Product Published Date:10/01/2020
Record Last Revised:03/07/2022
OMB Category:Other
Record ID: 354146