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● No single POD method excelled in all evaluation categories, although the 10th 
percentile, global MD, and random set methods performed well across both Cell 
Painting and transcriptomics data for most criteria.

● Cell Painting PODs tended to be lower than the transcriptomic PODs, except for 
when considering the multivariate methods (global MD and PLS-DA). These 
methods project features onto an orthogonal basis, suggesting that there could be a 
technical explanation (multicollinearity) rather than a biological explanation for the 
observed difference.

Conclusions

Replicates 
(2 vs. 3) No significant difference

IQR is 3-fold greater for 2 
replicates 

(p-value = 7.4e-12)

Feature filter 
(ANOVA vs. WTT) No significant difference No significant difference

Omics platform 
(Cell Painting vs. 
Transcriptomics)

Mean is 1.2-fold lower for 
Cell Painting 

(p-value = 2.2e-16)
No significant difference

Starting features 
(S1500 vs. whole 

transcriptome)
No significant difference

IQR is 5-fold greater for 
S1500 

(p-value = 0.016)

Comparison Mean POD Mean POD IQR

Dataset: Transcriptomics and Cell Painting dose-response data2 were collected 
from U2OS cells after exposure to 11 model compounds, along with DMSO 
controls. Each compound concentration-response series had 7 dose groups, with 
4 replicates per group. Cytotoxic dose groups were removed.

Methods: The general experimental design and data analysis pipeline for 
computing PODs (Fig 1A) was modified in four different ways (Fig 1B), resulting 
in 76 unique “replicate-platform-filter-POD type” scenarios. Replicates were 
sampled 30 times per compound for each scenario (Fig 1C), and PODs were 
computed from all samples (76 scenarios * 11 compounds * 30 samples = 25,080  
PODs). The resulting POD distributions were compared across scenarios to 
evaluate different POD methods and to draw conclusions about the impact of 
various experimental design choices. 
 

2 or 3 replicates

Transcriptomics or 
Cell Painting

ANOVA, WTT, or 
S1500  

7 different POD 
methods

Expose U2OS cells to 11 
compounds

Collect profiling data

Apply feature filters

Calculate PODs based on 
changes in gene 
expression or cell 

morphology 
 

Sample 30 matrices per scenario

Test for differences 
in  PODs across 

scenarios 

Figure 1: Analysis overview
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0.07 0% ✔ ✘ ✔ ✘ ✔

0.18 12% ✔ ✘ ✔ ✘ ✔

0.18 0% ✔ ✘ ✔ ✔ ✔

0.24 0% ✘ ✘ ✔ ✘ ✔

0.14 2% ✔ ✔ ✔ ✘ ✔

0.07 0% ✔ ✔ ✘ ✔ ✘

0.34 0% ✔ ✔ ✔ ✔ ✔

Figure 2. Comparison and evaluation  of POD methods. Distributions of 7 POD types for a representative 4 of 11 compounds, 
grouped by platform (A) and evaluated according to 7 criteria (B). Both A and B represent scenarios with 3 replicates, the WTT 
feature filter for transcriptomics data, and the full feature set for Cell Painting data. LCRD = lowest consistent response dose, MD = 
Mahalanobis distance, PLS-DA = partial least squares discriminant analysis, IQR = interquartile range.
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Table 1. Impact of experimental design modifications on the POD. 
Significant differences in the mean POD and mean POD IQR between different 
experimental designs were evaluated with paired t-tests, where each pair had 
identical experimental design parameters (compound, POD type, replicates, 
filter, omics platform, and starting feature set), other than the one specified in 
the “Comparison” column.

● Using sampling to derive estimates of POD variability enabled evaluation of 
significant differences between POD types and experimental design 
modifications.

● Each POD method had strengths and weaknesses; community consensus on 
the ideal POD characteristics for different regulatory applications would 
promote the development of “fit-for-purpose” POD pipelines.

● Future work will investigate explanations for the lower Cell Painting PODs, 
conduct qIVIVE to make comparisons between omic and apical PODs, and 
evaluate POD methods on a larger number of compounds, including some 
compounds  with low signal. 

 

● Transcriptomic points-of-departure (PODs) are a promising approach for 
integrating toxicogenomics data into risk assessment practices1.

● There is growing interest in deriving PODs using other omics platforms, for 
example morphological profiling (Cell Painting) data2.

● There are many different proposed methods for computing PODs.
● Most POD estimates are a single number with no confidence interval, limiting 

a statistically rigorous evaluation of modifications made to the experimental 
design and analytical pipeline. One solution is to use sampling to derive 
bootstrapped estimates of POD variability3.

● Here we use a sampling approach to compare five established and two novel 
methods for computing PODs across:
○ Omics platforms (transcriptomics and Cell Painting)
○ Number of replicates
○ Feature sets

● We compared the technical specifications, failure rate and variability of 
bootstrapped POD estimates to inform potential use of these methods in risk 
assessment.
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