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e Transcriptomic points-of-departure (PODs) are a promising approach for Figure 2. Comparison and evaluation of POD methods. Distributions of 7 POD types for a representative 4 of 11 compounds,
integrating toxicogenomics data into risk assessment practices”. grouped by platform (A) and evaluated according to 7 criteria (B). Both A and B represent scenarios with 3 replicates, the WTT Table 1. Impact of experimental design modifications on the POD.
e There is growing interest in deriving PODs using other omics platforms, for feature filter for transcriptomics data, and the full feature set for Cell Painting data. LCRD = lowest consistent response dose, MD = Significant differences in the mean POD and mean POD IQR between different
example morphological profiling (Cell Painting) data?. Mahalanobis distance, PLS-DA = partial least squares discriminant analysis, IQR = interquartile range. o . gxperimental d.esigns were evaluated with paired t-tests, where each pair had
. . _ O o identical experimental design parameters (compound, POD type, replicates,
e There are many different proposed methods for computing PODs. S C =) . . . ey -
| _ | _ _ o S S © S filter, omics platform, and starting feature set), other than the one specified in
e Most POD estimates are a single number with no confidence interval, limiting o = @ =4 the “Comparison” column.
a statistically rigorous evaluation of modifications made to the experimental k= Q S 7
design and analytical pipeline. One solution is to use sampling to derive A r % § g o I
S ) u
bootstrapped estimates of POD variability?®. --; | | | - B © = © O + O Comparison Mean POD Mean POD IQR
. . . - Transcriptomics - Cell Painting = > = [ 5 Q.
e Here we use a sampling approach to compare five established and two novel | = S - =2 2 g
methods for computing PODs across: — — — S % © 8 D 1 O - IQR is 3-fold greater for 2
_ _ _ o Actinomycin D Cucurbitacin | Cycloheximide Trichostatin A LL Rep“CateS N . f t dﬂ_- I t
o Omics platforms (transcriptomics and Cell Painting) (2 vs. 3) O signiticant dierence ( rlep '037943 12)
| | i p-value = 7. 4e-
© Number of replicates 10th percentile 0.07 | 0%

o Feature sets
e \We compared the technical specifications, failure rate and variability of I e
bootstrapped POD estimates to inform potential use of these methods in risk 1st mode o a m 0.18 12%

\ assessment. /
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LCRD | . 018 0%

Feature filter
(ANOVA vs. WTT)

No significant difference = No significant difference

Materials & MethOdS ;é Omics _pla_tform Mean is 1.2-fq|d_|ower for o |
: I~ | o | ot | Mo sorifcantdiferenc
Dataset: Transcriptomics and Cell Painting dose-response data’ were collected - Gene set 0.24 0%
from U20S cells after exposure to 11 model compounds, along with DMSO g_)
controls. Each compound concentration-response series had 7 dose groups, with §_1  Starting features IQR is 5-fold greater for
4 replicates per group. Cytotoxic dose groups were removed. Random set | | *' | 0.14 2% (S1500 vs. whole No significant difference S1500
transcriptome) (p-value = 0.016)

Methods: The general experimental design and data analysis pipeline for | v\
computing PODs (Fig 1A) was modified in four different ways (Fig 1B), resulting Global MD " 0.07 0%
In 76 unique ‘replicate-platform-filter-POD type” scenarios. Replicates were
sampled 30 times per compound for each scenario (Fig 1C), and PODs were =
computed from all samples (76 scenarios * 11 compounds * 30 samples = 25,080 L 034 0%
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PODs). The resulting POD distributions were compared across scenarios to PLS-DA
evaluate different P2 methods and to draw conclusions about the impact of R I A R IR e Using sampling to derive estimates of POD variability enabled evaluation of
various experimental design choices. L log10(POD) ] significant differences between POD types and experimental design
A B C | | e No single POD method excelled in all evaluation categories, although the 10th / | \ modifications.
Expose U20S cells to 11 { 2 or 3 replicates > B Sample 30 matrices per scenario percgntlle, global MD, and rapdom set methods performed well across both C_eII F"’I;d dete}lled metr]:ods, + Each POD method had strengths and weaknesses: community consensus on
o IIIIIIIIIIIII anine e ranseriptomics fate for mos! criteria. COCr)nI?)zurrc])crjn Szeal:,lclj the ideal POD characteristics for different regulatory applications would
¢-- Transcriptomics or ‘ Y ’ e Cell Painting PODs tended to be lower than the transcriptomic PODs, except for definitions of the POD promote  the development of ‘fit-for-purpose® POD  pipelines.
Collect profiling data Cell Painting when considering the multivariate methods (global MD and PLS-DA). These types and evaluation c ot il it o B ol Part POD
i l methods project features onto an orthogonal basis, suggesting that there could be a criteria here: ¢ ruture work will investigate explanations 1or the lower Lell Fainiling S,
| ANOVA, WTT, or technical explanation (multicollinearity) rather than a biological explanation for the \ / conduct glVIVE to make comparisons between omic ana apl_cal PQDS’ ana
Apply feature filters S1500 >\ observed dif?erence y J P evaluate POD methods on a larger number of compounds, including some

K compounds with low signal. /
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