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CONCLUSIONS

Disclaimer: The views expressed are those of the authors and do not necessarily reflect the views or policies of the US EPA.

• 82 Read-across examples cases were compiled from the three main sources.
• There were 22 unique decision contexts when aggregated by NAMs, technical guidance or regulatory 

purposes.
• Of the 82 examples, 68 captured regulatory purposes, the remainder were relatively evenly split 

between efforts to improve guidance or evaluate the utility of NAMs to substantiate read-across 
justifications.

METABOLIC SIMILARITY EVALUATIONCLASSYFIRE

METHODS

 The 82 read-across example cases were characterised 
by 497 individual substances of which 468 could be 
mapped to a discrete organic structure by way of 
SMILES

 To gain a perspective of the chemical diversity across 
these 468 substances, the chemistry ontology 
ClassyFire was used to assign structures into their 
respective chemical class.

 Some ~63% of the substances were members of either 
the “Benzene and substituted derivatives” class (25%), 
the “Fatty Acyls” class (14%), the “Organooxygen 
compounds” class (12%) or the “Carboxylic acids and 
derivatives” class (12%).

 A t-SNE plot based on Morgan chemical fingerprints 
shows the chemical landscape and is colour coded using 
a subset of the most populist chemical subclasses.

 Across the 82 examples, there were 77 different evidence 
streams characterising the basis for identifying and evaluating 
the source analogues in each case. The first component of the 
evidence stream characterising the primary means of identifying 
candidate source analogues was a structural one in 72 cases, and 
metabolism in 4 cases. 

 There were 13 different approaches by which analogues were 
identified. The barplot highlights the main tools and approaches.

 The OECD Toolbox, DSSTox (within the EPA CompTox Chemicals 
Dashboard), the NIH’s structure searching tool within 
ChemIDPlus or some combination of these tools were most 
common in terms of identifying structural analogues.

 However by far the most common means of identifying analogues 
was to look for common scaffolds based on functional groups. 

• The pairwise Jaccard similarities were 
computed within each read-across 
example to explore how  structurally 
similar the target and source analogues 
were amongst themselves.

• The median of the distribution of 
median values for each case study was 
determined to be 0.34. (see Fig a)

• There was a large degree of variation in 
pairwise similarities within each case 
study (See Fig b)

Read-across is a data-gap filling technique utilised to predict the toxicity of a target chemical using data from 
similar analogues. Read-across is predominantly performed as part of an expert-driven assessment which can 
impeded broad acceptance. Data-driven approaches such as Generalised Read-Across (GenRA) offer scope to 
generate reproducible read-across predictions where uncertainties and performance are quantified. A key issue is 
how to reconcile an expert-driven approach with a data driven approach both in terms of how analogues are 
identified and evaluated as well as how the read-across prediction is derived. An important component of analogue 
identification and selection is in understanding the contribution that different similarity contexts play, i.e. does 
structural similarity play a larger role in analogue selection compared with metabolism similarity. This study aimed to 
explore some of these considerations through building a compendium of expert-driven read-across assessments that 
had been published for repeated-dose toxicity endpoints.

DATASET SUMMARY 

ANALOGUE EVIDENCE STREAMS

• Read-across cases of repeated dose toxicity were compiled from the published literature, EPA Provision 
Peer Review Toxicity Values (PPRTV) assessments as well as OECD IATA case studies.

• A structured excel sheet was created to capture specific information including the target substances 
being assessed, the candidate source analogues, the toxicity data being read across as well as the 
rationale use to identify and evaluate the analogues (so-named analogue evidence streams).

• A SOP was developed to ensure consistency in extractions. Extractions were performed by one individual 
which were then checked for completeness and consistency by a second individual.

• Target and source analogue identities were subsequently mapped to DSSTox content using the EPA 
CompTox Chemicals Dashboard to augment the information captured to include structures using SMILES. 

• The freely available web application ClassyFire was used to categorise all discrete organic structures into 
classes using its chemistry ontology.

• Similarity contexts evaluated included structure and predicted metabolism.
• Metric learning approaches were attempted to predict to target-analogue associations from chemical 

structure and predicted metabolism information, the latter generated using OASIS TIMES.

(a) (b)

• The balance of decision contexts is not unsurprising given the 
origin of the case studies, ~25 (30%) of the cases were taken 
from the US EPA PPRTV effort, 38% were OECD SIDs 
examples, 15% were OECD IATA case studies, 10% from journal 
articles with the remainder comprising a couple of examples 
each from ECETOC or Health Canada.

• Of the approaches used, there was a bias towards category 
approaches with 55% of cases utilising a category approach and 
the 36% being analogue approaches.

• All the EPA PPRTV cases relied on an analogue approach whereas 
in general over 90% of all other examples used a category 
approach.

Median number of members 
within a case was 5 whereas 
the maximum was 42.

• The pairwise similarities were computed within each read-across example to explore how  metabolic similar 
the target and source analogues were amongst themselves with respect to their metabolic graph (c) and 
transformation profile (d)

• There was a large degree of variation in pairwise similarities within each case study and the similarities 
were low overall.

(c) (d)

METRIC LEARNING EVALUATIONS
A deep learning metric learning approach was attempted as follows:
 A pairwise matrix was constructed for all substances with SMILES. If a pair of substances were both members of the 

same read-across case, it was denoted by label 0, otherwise by label 1. A random sampling was performed to 
downsample the dissimilar pairs. 

 A Graph Isomorphism Network (GIN) was structured as a Siamese network such that each pair of substances could be 
fed into the network, contrastive loss was used as the loss function since it learns embeddings in which two similar 
substances have a low Euclidean distance and two dissimilar points have a large Euclidean distance. Two networks were 
investigated: 1) in one network, target-analogue smiles were used as inputs which were converted into pytorch-
geometric graphs whereas the second network 2) used predicted metabolic graphs as inputs where the nodes were 
represented as bit vectors of Morgan fingerprints (FPs) and the edges were represented by the reaction pathway 
which was one encoded as a feature vector. The intent was to explore embeddings representing chemical structure 
information and predicted metabolism information.

 Performance was poor in both cases – using a threshold of 5 for network 1 – the accuracy was only 26%. The low 
structural similarities observed for the read-across pairs is likely to be contributing to this poor performance. The 
embeddings were unable to discriminate between the similar and dissimilar read-across pairs (Figure e). In network 2, 
the accuracy was higher at 45% but the discrimination remained poor using the GIN metabolism embeddings (Figure f).

(e) (f)

 A set of read-across cases published in the literature and elsewhere were compiled.
 Preliminary work undertaken has evaluated the similarity of the substances within the cases from the perspective of 

structure and metabolism. Similarities appeared to be low and extremely variable across and within each case example. 
 GCN models were attempted in an effort to derive embeddings that could differentiate between similar and dissimilar 

read-across substances. Further work will consider other metric learning approaches.
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