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Project Overview

 Toxin-producing cyanobacterial harmful algal blooms (HABs) are being 
observed for the first time in Duluth-Superior Harbor (DSH)

 Barker’s Island Beach (BIB) has experienced two toxic blooms in the 
summer/autumn of the last two years

 Water quality data was collected June-October 2022 to identify potential 
environmental triggers for toxin production

 Light intensity, turbidity, and temperature identified as potential stressors

 Batch experiments will be conducted on toxic cultures to study the 
relationships between toxin production and triggers

 Field studies will be conducted to validate experimental results
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What are Cyanobacterial HABs?

 HABS comprised primarily of cyanobacteria

 Phylum of gram-negative bacteria

 Oldest photosynthetic organisms and only photosynthetic 
prokaryotes – responsible for creating the planet’s oxygen-rich 
atmosphere

 Prefer warm, shallow, stratified, eutrophic waters and sunny 
conditions

 Can release a range of toxins under stress

 Can aggregate to form large, unsightly surface “blooms” that 
pose significant economic, human health, and ecological risk
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Cyanobacterial Toxins (cyanotoxins)

 Toxic compounds released by cyanobacteria as secondary 
metabolites
 Not required for growth, development, or reproduction

 Released during times of oxidative stress (grazing, WQ changes, etc.)

 Toxic to humans and animals - known to bioaccumulate in crops and 
fish

 Most common is Microcystin

 MC-LR

 Synthesized by a range of species

 Potent hepatotoxin and possible human carcinogen

 Responsible for the deaths of several dogs, livestock, and fish
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The Problem

 Cyanobacterial HABs are increasing in frequency + intensity + toxicity

 Global warming

 Increased nutrient input

 Increased human activity

 Altered precipitation events (heavy rain, drought, etc.)

 Frequent occurrence in the Great Lakes since the 60s

 Primarily observed in Lake Erie, Green Bay, Saginaw Bay

 Recent occurrence in Lake Superior is a phenomenon

 Cold + Oligotrophic

 Numerous algal blooms reported along the southwestern part of 
the lake along the Wisconsin nearshore in the last several years

 Generally localized and very small in comparison to inland lakes –
not as extensive as Lake Erie
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Data: Lake Superior Nearshore Monitoring Group (LaFrancois, 
Benesh) 



The Setting

 Barker’s Island Beach (BIB)

 Popular recreational 
destination in DSH

 Surrounding land use primarily 
commercial and residential

 Closed in September 2021 for 
toxin bloom (microcystin > 8 
µg∙L-1)

 Primarily Dolichospermum
lemmermannii 
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The Big Question

 What is it about the water quality of the Duluth-Superior 
Harbor that is causing toxic bloom formation?

 Which water quality factors are associated with BIB blooms?

 What types of conditions are correlated with toxin synthesis and release?

 Do lab experiments translate effectively to field observations?
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Collect Data
 5 sites weekly to capture spatiotemporal 

variability June-Oct 2022

 Measured WQ characteristics

 temperature, dissolved oxygen 
(DO), conductivity, pH, turbidity, 
PAR

 Measured chlorophyll a (Chl a) and 
phycocyanin (PCY) concentrations using 
handheld fluorometer

 Collected water samples just below 
surface when ± 5 µg∙L-1 change in Chl 
a/PCY detected by fluorometer

 Nutrients (TP, TN)

 Cations/anions (Fe, K, Mg, Ca, Na, 
Si, Cl, SO4)

 Chl a, PCY (extraction)

 Microcystin/Nodularin (MCX)

 Dissolved Organic Carbon (DOC)

 eDNA for metabarcoding (bloom)
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Toxic Bloom September 2022
 Long skinny bloom along the shoreline of BIB

 Water samples collected for metabarcoding and culturing

 Microscope identified Microcystis and Dolichospermum spp

 MCX concentration of 3.96 µg∙L-1 as verified by ELISA assay

 No detectable MCX just outside bloom
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Analyze available data to identify potential 
stressors of toxin production
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Antecedent Conditions:
• High air temp
• High water temp
• Low DO
• High Light Intensity

Bloom Conditions:
• Low air temp
• Low water temp
• High DO
• Low Light Intensity
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Just outside bloom

Just outside bloom

Bloom

Bloom



Field Conclusions
 Toxic bloom occurred after notable drop in air and 

water temperatures + light intensity

 Hypothesis: Sudden changes in environmental 
conditions triggered toxin production by stressed 
cyanobacteria

 Null hypothesis: no changes in MC production 
with changing conditions

 Alternative Hypothesis: High light intensity, 
temperature drop, low turbidity  = Highest MC 
production

 Batch experiments will attempt to isolate factors or 
combination of factors to pinpoint triggers of toxin 
production

 Varying turbidities will be used to account for 
any other “unknown” factors and to mimic 
changes caused by precipitation events
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Validate
 Compare field observations to batch 

experiments:

 June – October 2023

 Collect water samples at 3 discrete 
depths (surface, mid, bottom) –
turbidity gradients

 Collect on shady and sunny side of 
dock – light intensity

 Collect during high and low 
temperatures during July (non-bloom 
month) and high and low temperatures 
in September (bloom month)

 Sample daily after Labor Day until 
bloom is observed

 Sample after major precipitation 
events (if feasible)
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