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Disclaimer 

The U.S. Environmental Protection Agency (EPA), through its Center for Environmental Solutions and 
Emergency Response (CESER) within the Office of Research and Development (ORD), conducted the 
research described herein. It has been subjected to the Agency’s review and approved for publication. 
Note that approval does not signify that the contents necessarily reflect the views of the Agency. Any 
mention of trade names, products, or services does not imply an endorsement by the U.S. Government 
or EPA. The EPA does not endorse any commercial products, services, or enterprises.  

Questions concerning this document, or its application should be addressed to: 

Timothy Boe 
U.S. Environmental Protection Agency 
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Foreword 

The U.S. Environmental Protection Agency (EPA) is charged by Congress with protecting the Nation’s 
land, air, and water resources. Under a mandate of national environmental laws, the Agency strives to 
formulate and implement actions leading to a compatible balance between human activities and the 
ability of natural systems to support and nurture life. To meet this mandate, EPA's research program is 
providing data and technical support for solving environmental problems today and building a science 
knowledge base necessary to manage our ecological resources wisely, understand how pollutants affect 
our health, and prevent or reduce environmental risks in the future. 

The Center for Environmental Solutions and Emergency Response (CESER) within the Office of Research 
and Development (ORD) conducts applied, stakeholder-driven research and provides responsive 
technical support to help solve the Nation’s environmental challenges. The Center’s research focuses on 
innovative approaches to address environmental challenges associated with the built environment. We 
develop technologies and decision-support tools to help safeguard public water systems and 
groundwater, guide sustainable materials management, remediate sites from traditional contamination 
sources and emerging environmental stressors, and address potential threats from terrorism and 
natural disasters. CESER collaborates with both public and private sector partners to foster technologies 
that improve the effectiveness and reduce the cost of compliance, while anticipating emerging 
problems. We provide technical support to EPA regions and programs, states, tribal nations, and federal 
partners, and serve as the interagency liaison for EPA in homeland security research and technology. 
The Center is a leader in providing scientific solutions to protect human health and the environment. 

The study explored the potential of artificial intelligence (AI) in disaster response and environmental 
remediation by providing a historical overview, conducting a meta-analysis of related literature, 
identifying natural language processing (NLP) and image analysis as key research areas, and presenting 
conceptual examples of AI's potential applications. The study emphasized the need for further research 
and development while addressing barriers and challenges to ensure ethical deployment and data 
privacy. The findings highlighted the significant potential of AI to revolutionize various sectors, including 
disaster response and environmental remediation.  

Gregory Sayles, Director 
Center for Environmental Solutions and Emergency Response 
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Executive Summary 

This study explored the potential of artificial intelligence (AI) in disaster response and environmental 
remediation by conducting a meta-analysis of AI-related literature and providing a historical overview of 
AI. The study identified natural language processing (NLP) and image analysis as two primary research 
areas that could greatly benefit from AI integration. Conceptual examples were presented, showcasing 
the potential of NLP in enhancing communications, code writing, interpreting scientific material, and 
strategy optimization, while image analysis applications included visualizing training scenarios, debris 
characterization, and design prototyping. 

The study also discussed emerging developments and potential impediments that might influence the 
adoption of AI in the public sector. It emphasized the importance of establishing policy frameworks and 
guidelines to ensure ethical applications and data privacy. The report highlighted the significant 
potential of AI to revolutionize various sectors, particularly disaster response and environmental 
remediation, while also addressing existing barriers and challenges associated with the deployment and 
utilization of this technology. 

The research demonstrated the transformative potential of AI in disaster response and environmental 
remediation, but also underscored the need for further exploration and development of AI applications. 
By addressing the challenges and barriers surrounding AI deployment, AI has the potential to bring 
about revolutionary changes across various sectors, including disaster response and environmental 
remediation.

https://usepa-my.sharepoint.com/personal/musson_steve_epa_gov/Documents/Profile/Desktop/Report%20Template/www.epa.gov/research


1 

1. Introduction

Artificial intelligence (AI) is a multidisciplinary branch of computer science aimed at developing 
computational systems that can perform tasks typically requiring human intelligence. The ultimate goal 
of AI research is to create machines capable of learning, reasoning, perceiving, and interacting 
autonomously, thereby emulating or even surpassing human cognitive abilities. AI's history can be 
traced back to Alan Turing's introduction of the Turing Test in 1950 as a criterion for determining 
machine intelligence indistinguishable from human behavior [1]. The 1956 Dartmouth Conference 
marked AI's official birth as an independent research field, uniting experts from diverse disciplines to 
explore the potential of creating machines simulating human intelligence [2]. Subsequent advancements 
included the development of early AI programs such as the General Problem Solver, the establishment 
of dedicated AI research centers, and the rise of knowledge representation and rule-based systems in 
the 1970s [3-5]. The field shifted towards machine learning (ML) in the 1980s with the introduction of 
the backpropagation algorithm, enabling computers to learn patterns and make predictions based on 
large amounts of data [6]. Reinforcement learning, a type of ML, emerged in the 1990s, allowing 
algorithms to make decisions based on interactions with their environment and feedback [7]. The 21st 
century witnessed significant advancements with the rise of deep learning, a subset of neural networks, 
leading to breakthroughs in various AI applications such as image classification, natural language 
processing (NLP), and speech recognition [8]. 

ML and deep learning form the backbone of AI, enabling machines to learn from data and adapt their 
behavior accordingly. ML comprises a variety of algorithms for processing and analyzing data, identifying 
patterns, and making predictions or decisions, with techniques including supervised learning, 
unsupervised learning, and reinforcement learning. Supervised learning utilizes labeled datasets, 
unsupervised learning detects inherent structures and patterns without labels, and reinforcement 
learning involves an agent1 learning to make decisions through interaction with its environment and 
feedback in the form of rewards or penalties. Deep learning, a subset of ML, employs artificial neural 
networks (ANNs) with multiple layers to model complex patterns and relationships in data. 

Knowledge representation and reasoning are essential aspects of AI systems, encoding information, 
facts, and relationships in structured formats that machines can understand and manipulate. Common 
knowledge representation techniques include semantic networks, frames, and ontologies. AI systems 
also utilize logic-based reasoning to infer new facts, deduce consequences, and make decisions based on 
available knowledge. In essence, AI operates through the integration of various techniques and 
methodologies such as machine learning, deep learning, knowledge representation, and reasoning. This 
enables AI systems to learn, adapt, and perform tasks typically requiring human intelligence, with 
applications spanning diverse domains. 

Data, algorithms, and computational power form the foundation of AI systems, providing the raw 
material, rules, and resources necessary for learning patterns and making predictions. In machine 
learning, data are divided into training, validation, and testing sets for building, fine-tuning, and 
evaluating software models, respectively, with data quality and quantity directly impacting model 
accuracy and generalizability [9]. Large-scale datasets, such as ImageNet, have driven significant AI 

1 An agent, in the context of this paper, is a self-directed software entity that can make decisions and take actions 
to achieve specified goals.  
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advancements [10]. Algorithms, defining rules and strategies for processing data and decision-making, 
vary depending on problem and data characteristics. For instance, decision trees suit problems with 
discrete outputs and few features, while deep neural networks are better for high-dimensional data, 
such as images or text [11]. Computational power enables complex algorithm execution and large 
dataset processing, with advancements in technologies like graphics processing units (GPUs) facilitating 
rapid AI model training and deployment [12, 13]. Cloud-based computing resources further democratize 
computational power access, allowing researchers and organizations to scale AI systems on demand. 

AI offers significant advantages to various sectors, including industry and government. AI utilization 
enables rapid task execution, automation, and expansion, potentially leading to a transformative phase 
of innovation that could permanently alter the way humans perceive and conduct work. This report 
focuses primarily on disaster response, particularly the application of AI in environmental remediation 
and disaster recovery (herein referred to as simply “disaster recovery”). Historically, the field of disaster 
response has demonstrated slow adoption of technology, a trend that could persist as AI becomes more 
prevalent. Despite some preliminary advancements in applying AI to disaster recovery, this domain can 
greatly benefit from further research, development, and operational applications. To delve deeper into 
the capabilities of AI in addressing disaster-related challenges, this paper outlines the subsequent 
objectives: 

1. Provide a concise historical overview of AI, its functionality, and its implementation;
2. Conduct a meta-analysis of AI-related literature to identify prevalent patterns, trends, or effects

in the context of environmental remediation and disaster recovery;
3. Determine two primary research areas within environmental remediation and disaster recovery

that can reap immediate and substantial benefits from AI integration;
4. Illustrate the potential of AI by presenting a series of conceptual examples that address

prevalent disaster response tasks and challenges; and
5. Examine emerging developments and potential impediments that might influence the adoption

of AI in the public sector.

These objectives will guide the subsequent sections, ultimately offering valuable insights into the 
potential impact of AI on disaster recovery, as well as opportunities for further research and 
development in this field. 
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2. Methodology

The methodology of this study centers on two primary goals, both of which were achieved through a 
literature search. The first goal is to gain a deeper understanding of AI's background (presented in the 
introduction of this paper) and applications, while the second goal focuses on identifying common AI 
applications. By annotating the resulting literature, key research areas and easily achievable innovations 
can be pinpointed, which can then be applied to aspects of disaster recovery. The literature search was 
conducted in two stages. The first stage was a quick pass to gain an overview of available literature. 
Table 1 displays the search strings utilized for this preliminary search. Based on the results and feedback, 
the search strings were revised to align better with the study objectives, as shown in Table 2. 

Table 1. Preliminary Search Strategy 

QUERY 

FI
RS

T 
ST

AG
E 

[AI] AND [(“chemical”) OR (“biological”) OR (“radioactive”) OR (“emergency”) OR (“flood”)] AND 
(“event”) 

[AI] AND (“disaster”) AND [(“response”) OR (“simulation”)] 

[AI] AND (“natural disaster”) 

[AI] AND [(“planning”) OR (“decision-making”) OR (“decision making”)] AND [(“simulations”) OR 
(“videogames”) OR (“disaster response”)] 

[Creation] 

[Creation] IN [(“simulations”) OR (“videogames”)] 

Table 2. Refined Search Strategy 

QUERY 

SE
CO

N
D 

ST
AG

E 

[AI] AND [(“biological agent”) OR (“chemical agent”) OR (“agent”) OR (“disaster”)] AND 
(“contamination”) 

[AI] AND (“emergency”) AND (“logistics”) 

[AI] AND (“Haiti earthquake”) 

[AI] AND (“hurricane”) AND (“damage”) 

[AI] AND (“oil spill”) 

[AI] AND (“quarantine”) AND NOT (“COVID”) 

[AI] AND (“radioactivity”) AND (“contamination”) 

[AI] AND (“radiological”) AND (“incident”) 

[AI] AND (“toxic waste”) 

[AI] AND (“waste dumping”) 

To conduct the literature search, ReadCube (ReadCube, Cambridge, MA, USA) software was used. 
ReadCube aggregates scholarly articles and offers querying, cataloging, and annotation capabilities for 
literature. Credible sources included peer-reviewed journals, scientific manuals, and other scientific 
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publications, as well as information from nationally and internationally recognized academic, scientific, 
technical, or response organizations. The search focused on papers published between 2010 and 2021, 
primarily targeting English-language sources, while making allowances for a few high-impact papers in 
the field of AI. 

A summary of potential research areas and their application to environmental remediation and disaster 
recovery is discussed in Section 4, while a meta-analysis of the collected literature is presented in 
Section 4.1. 

2.1. Quality Control 

The purpose of this study was to synthesize existing knowledge and research as it relates to AI and 
environmental remediation and disaster recovery. The work and conclusions presented as part of this 
study were empirical and observational – no scientific experiments were performed. Technical experts 
in the field of AI evaluated the quality of the information collected by this effort (i.e., secondary data), 
and based on their expert opinion, determined if the information should be documented within the 
literature review. All supporting documentation of the secondary data considered worthy for inclusion 
were cited. However, no experimental confirmation of secondary data (e.g., accuracy, precision, 
representativeness, completeness, and comparability) was conducted as part of this study. 
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3. Environmental Remediation and Disaster Recovery

Environmental remediation refers to the process of removing, neutralizing, or containing pollutants and 
contaminants from indoor and outdoor environments, in order to restore the affected areas to their 
uncontaminated state. This process typically involves the use of various technologies, methods, and 
strategies to clean up hazardous waste, manage pollution, and reduce risks to human health and the 
environment. Disaster recovery, however, is the coordinated set of actions and strategies aimed at 
restoring, rebuilding, and rehabilitating communities and ecosystems affected by natural or human-
caused disasters. These disasters can include events such as hurricanes, floods, earthquakes, fires, or 
human-caused incidents. Disaster recovery efforts often involve multiple stakeholders, including 
governments, non-governmental organizations, and local communities, and encompass a range of 
activities such as infrastructure repair, economic revitalization, and social support systems. 

In the context of environmental remediation and disaster recovery, the combined objective is to restore 
the environment and affected communities, through a series of interconnected processes, expert 
knowledge, and decision-making efforts. AI, a broad term encompassing various technical capabilities, 
topics, and industries, holds significant potential for facilitating many decision points within this context. 
By enhancing decision-making and communication, AI would allow officials to concentrate more 
effectively on critical aspects of the response. To better understand the application of AI in disaster 
recovery, the relevant literature needs to be investigated and AI’s natural language and image 
processing components need to be explored. 

By providing a series of conceptual examples, this report aims to demonstrate the potential application 
of AI in this domain, emphasizing its capabilities and the need for further research to fully harness AI's 
potential in the field of disaster recovery. 

3.1. AI Research Trends in Disaster Recovery 

Based on the literature search strategy presented in Section 3, the preliminary and refined searches 
yielded approximately 500 papers. The titles and abstracts of these papers were reviewed to ensure 
their relevance to the topics of interest. Any irrelevant (e.g., mentioning AI in a broader context but not 
focusing on AI) or low-quality results (e.g., missing a significant number of metadata fields) were 
excluded. A small portion of the papers, 16 in total, published before 2010 were retained. Based on the 
title and abstract review, papers were categorized according to their relevance to environmental 
remediation and disaster recovery applications. Relevant publications were then retrieved for a full-text 
review, although the overall number of papers addressing the topic was limited. 

To differentiate and group the publications, keywords were extracted from abstracts and categorized 
into five groups: 

• Algorithms – Names of common machine learning algorithms
• Agents – Contamination agents that are the pretext or a component of a disaster event
• Threats – Negative consequences that could be a part of the disaster event
• Environments – Different types of natural environments that are part of the event
• Topics (relevancy) – High-level, topical categories

These categories and their associated keywords are listed in Table 3. In some cases, keywords included 
multiple variants of spelling or word forms, such as "radioactive," "radiological," and "radiation" all 
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falling under the keyword "radioactive." Once the categories were fully defined, a Python (version 
3.11.3) script was used to read the abstracts, parse the keywords, and generate keyword counts for 
each category. The keywords within each category are not mutually exclusive, meaning that an abstract 
could contain multiple keywords or no keywords for a given category, as well as keywords from multiple 
categories. 

Table 3. Abstract Keywords by Category 

Keyword Keywords 

Al
go

rit
hm

 

bayes 

Ag
en

t 

radioactive 

clustering biological 

convolutional neural network chemical 

decision tree 

Th
re

at
 

evolutionary algorithm contamination 

genetic algorithm pathogens 

gradient boosting 

En
vi

ro
nm

en
t LDA “’linear discriminant analysis” air 

LSTM “long short-term memory” earth 

neural network water 

random forest 

regression 

To
pi

c 

disaster logistics 

reinforcement learning environmental research 

support vector machine games 

geospatial analytics 

social media research 

Abstracts predominantly contained environment keywords (83% featuring at least one keyword) and 
topic keywords (79%), while the presence of threat or agent keywords was less frequent (25% and 17%, 
respectively). Algorithm keywords appeared in 42% of the abstracts. The figures below exclude abstracts 
without keywords in a specific category, and the number of abstracts with at least one keyword, 
denoted as n, is displayed for each figure. It is important to note that an abstract might contain multiple 
keywords; thus, the values on the bars will sum to more than n. One limitation of the keyword analysis is 
that only the abstracts were searched, meaning a keyword might be present in the main body of a paper 
but not in its abstract; although, this is unlikely. The counts and plots provided below give a general 
overview of the abstracts' composition and could be useful in determining the current state of research 
and the technologies being utilized. 
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Figure 1 illustrates the prevalence of algorithm keywords. Support vector machines (14% of all 
abstracts), neural networks (14%), and random forests (10%) were the most frequently mentioned 
algorithms. To ensure no crucial algorithms were omitted from the keyword list, abstracts without 
keywords in this category were examined. These abstracts generally did not name any specific 
algorithms, rather than mentioning algorithms absent from the keyword list. 

Figure 1. Prevalence of algorithm keywords among abstracts. 

Figure 2 displays the prevalence of agent keywords. This category was the least likely to appear in the 
abstracts, with only 17% of the abstracts containing agent keywords. Among all abstracts, the most 
frequently mentioned agent was chemical (11%), while radioactive and biological agents were each 
mentioned in merely 3% of the abstracts. This observation suggested that the majority of the relevant 
publications identified in this study did not specifically concentrate on a disaster event involving one of 
these agent types.  

https://usepa-my.sharepoint.com/personal/musson_steve_epa_gov/Documents/Profile/Desktop/Report%20Template/www.epa.gov/research


8 

Figure 2. Prevalence of agent keywords among abstracts. 

Figure 3 presents the prevalence of threat keywords. Similar to the agent category, a considerable 
number of abstracts (75%) lacked threat keywords. Among the abstracts that included threat keywords, 
contamination was mentioned more frequently (17% of all abstracts) compared to pathogens (9%). 

Figure 3. Prevalence of threat keywords among abstracts. 

Figure 4 illustrates the prevalence of environment keywords. The most frequently mentioned 
environment keyword was water (69% of all abstracts), followed by earth (e.g., solid matter or ground 
surfaces) and air (30% and 15%, respectively). As previously mentioned, environment keywords had the 
highest likelihood of appearing in the abstracts. 

Figure 4. Prevalence of environment keywords among abstracts. 

Lastly, Figure 5 presents the prevalence of topic keywords. Environmental research was the most 
frequently mentioned topic, appearing in 61% of all abstracts. This result was expected, considering the 
broader theme of this literature review and the queries used in the search process. More notably, 29% 
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of the abstracts contained keywords related to disaster logistics. This subset of articles might be 
particularly valuable for identifying tools relevant to disaster debris logistics. 

Figure 5. Prevalence of topic keywords among abstracts. 

The analysis of approximately 500 papers focusing on the application of AI in the field of environmental 
remediation and disaster recovery revealed that the literature on this topic is limited, with a majority of 
relevant publications focusing on environmental research and disaster logistics, evident from the 
prevalence of environment and topic keywords in the abstracts, while agent and threat keywords were 
less frequently mentioned. The identified subset of articles related to disaster logistics could be valuable 
for developing novel disaster event scenarios and tools. Despite the limitations of the keyword analysis, 
such as only searching abstracts and the possibility of overlooking keywords in the main body of papers, 
the findings provide a general understanding of the current state of research and the technologies being 
employed in this field. 

3.2. Natural Language Processing and Information Analysis 

Natural language processing (NLP) is a subfield of AI that focuses on enabling computers to understand, 
interpret, and generate human language [14]. The development of NLP techniques has been facilitated 
by the rapid progress in deep learning, which has allowed researchers to create more sophisticated 
models for language representation [14]. Key NLP tasks include, but are not limited to, corpus linguistics, 
named entity recognition, sentiment analysis, and machine translation. The evolution of NLP has led to 
the emergence of conversational AI, a branch of AI that aims to create natural and effective 
communication between humans and machines through chatbots and virtual assistants [15]. 

Conversational AI relies on a combination of NLP techniques and additional components to facilitate 
human-like interactions. To achieve this, systems typically employ an architecture consisting of three 
main components: natural language understanding (NLU), dialog management, and natural language 
generation (NLG)[16]. The NLU module processes and extracts meaning from user input, dialog 
management maintains the context and flow of the conversation, and the NLG component generates 
human-readable responses. State-of-the-art conversational AI systems, such as OpenAI's GPT 
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(Generative Pre-Trained Transformer) series, demonstrate remarkable language understanding and 
generation capabilities [17]. 

Through advanced machine learning techniques, particularly deep learning models, NLP has achieved 
significant progress in various tasks, such as sentiment analysis, machine translation, and text 
summarization [18]. NLP and AI-driven analysis involve the use of algorithms and models that can 
process and learn from large amounts of textual data. These models are typically trained on extensive 
datasets to capture the nuances of human language and are capable of understanding the context and 
semantics of text. By leveraging techniques such as tokenization, parsing, and vectorization, NLP models 
can break down and represent text in a format that can be easily processed and analyzed by AI systems. 

Despite significant advancements in the field, challenges remain in developing conversational AI systems 
capable of handling complex, context-dependent interactions. Existing limitations include difficulties in 
maintaining long-term context, addressing ambiguous queries, AI hallucination, and generating safe and 
unbiased responses [19]. The following sections provide examples of the application of NLP and 
conversational AI to four areas of research that are relevant to disaster recovery. 

3.2.1. Enhancing Communication and Collaboration Among Stakeholders 

AI has increasingly been applied to facilitate and enhance communication and collaboration among 
stakeholders in various domains, ranging from organizational management to software development 
[20]. AI-driven technologies, such as NLP and machine learning, have been employed to analyze textual 
data, automate routine tasks, and provide context-aware recommendations, enabling stakeholders to 
engage in more effective communication and collaboration [21]. 

One notable application of AI in enhancing stakeholder communication and collaboration is through the 
use of intelligent chatbots, such as ChatGPT (OpenAI, San Francisco, CA, USA). These chatbots can help 
organize and streamline communications, provide real-time language translation, offer data-driven 
insights, and automate tasks, ultimately improving efficiency and fostering a more inclusive and engaged 
working environment [22]. Additionally, AI-driven analysis tools can be employed to gauge stakeholder 
sentiment and identify areas of concern or disagreement, allowing organizations to address potential 
issues proactively [23]. Despite the potential benefits of AI in enhancing stakeholder communication and 
collaboration, certain challenges remain, such as ensuring data privacy, addressing the potential for 
algorithmic bias, and managing the integration of AI systems within existing workflows [24]. 

Communication is one of the most critical aspects of disaster response. Poor communication can have 
consequences on operations, decision making, and public sentiment often associated with the challenge 
of communicating information in a timely manner and communicating technical details to audiences 
with varying cultural and educational backgrounds.  Throughout history there have been numerous 
examples of information not being communicated in a clear and consistent manner, which resulted in 
the loss of life and property. This problem is further shared with subject matter experts and scientists 
who translate highly detailed technical data from models and software tools. These tools are used to 
communicate important information such as evacuation zones or technical guidance to operational 
experts. The application of AI-driven technologies like NLP can help bridge the communication gap, 
enabling a more effective and accurate transmission of critical information during disaster response 
situations. 

3.2.1.1. Conceptual Example - Enhancing Communication 
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In the following conceptual example, GPT-4, an advanced NLP model, is applied to process and 
communicate a technical spreadsheet generated by one of U.S. Environmental Protection Agency’s 
(EPA’s) waste management tools. This tool supports waste logistics planning and provides information 
regarding total waste amounts, transportation costs, and time. The NLP model (otherwise known as the 
“agent”2) was tasked with translating the technical data into an easily readable format for two distinct 
stakeholder groups: 1) decision-makers, and 2) community members. Table 4 represents the 
spreadsheet that was passed to the agent (GPT-4), containing information primarily related to waste 
amounts and the associated cost and time for transporting waste to disposal facilities. 

Table 4. Example Waste Logistics Modeling Result 

Type Result 
Waste Type Municipal Solid Waste (MSW) 
Waste Medium Volume Solid 
Total Waste Amount 150,000,000 
Allocated Amount 150,000,000 
Unallocated Amount 0% 
Waste Unit m3 
Condition ID Default 
Factor ID Default 
Facility Attributes ID Default 
Road Transporter Attrs ID Average Truck Hauling 
Rail Transporter Attrs ID Average Train Hauling 
Total Number of Facilities 5 
Total Number of Road Shipments 12995 
Total Number of Rail Shipments 115 
Total Transportation Cost per Loaded 
Mile (CPLM) Cost ($) 

$0 

Total Fixed Cost Per Contnr ($) $4,106,617 
Total Fixed Cost Per Hour ($) $280,656 
Total Fixed Cost By Volume ($) $0 
Total Tolls ($) $0 
Total Misc Trans Costs ($) $0 
Total Transportation Cost ($) $4,387,273 
Total Staging Site Cost ($) $0 
Total Disposal Cost ($) $14,072,896 
Total Labor Cost ($) $123,095 
Total Vehicle Decon Cost ($) $0 
Total Cost Multiplier ($) $4,645,816 
Total Cost ($) $23,229,082 
Vehicle Time to Complete (days) 10 
Destination Time to Complete (days) 188 

2 The term "agent" in AI is borrowed from the fields of multiagent systems and artificial intelligence, where it is 
used to describe entities that possess a certain level of intelligence, autonomy, and decision-making capabilities. 
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Total Time Days (days) 23200% 

The subsequent passages were generated by the AI agent, specifically tailored for two distinct 
audiences: decision-makers and the community. These adaptations were based on a simple prompt 
designed to consider the specific need of each stakeholder (e.g., “Explain this table as if you were talking 
to a [insert audience type]”). 

Decision-maker: 

The Municipal Solid Waste (MSW) generated in the given scenario amounts to 
1,500,000 cubic meters, with no unallocated waste. It is crucial for decision-makers to 
consider the fact that the waste management process involves a total of five waste 
handling facilities. The transportation of this waste is handled by both road and rail, 
with 12,995 road shipments and 115 rail shipments, respectively. Given the number 
of facilities and transportation methods, it is important to assess the overall efficiency 
and cost-effectiveness of the waste management process. 

When it comes to the financial aspect of waste management, the total transportation 
cost amounts to $4,387,273.64. In addition to this, the disposal cost is significant, 
reaching $14,072,896.28. Labor costs contribute another $123,095.75 to the total 
expenses. It is important for decision-makers to evaluate these costs in relation to the 
potential benefits of the waste management process, as well as to explore 
opportunities for optimizing and reducing expenses. 

Another important factor to consider is the time it takes to complete the waste 
management process. In this scenario, vehicles require 10 days to complete their 
transportation tasks, while it takes 188 days for waste disposal at the destination 
sites. The entire process spans a total of 232 days. Decision-makers should take these 
timeframes into account when planning and implementing waste management 
strategies, aiming to minimize the time it takes to handle the waste effectively and 
safely. 

In summary, the given scenario presents a waste management process that involves 
1,500,000 cubic meters of Municipal Solid Waste, transportation by road and rail, 
and a total of five facilities. The costs associated with this process are substantial, 
including transportation, disposal, labor, and other miscellaneous expenses, totaling 
$23,229,082.09. The entire process takes 232 days to complete. Decision-makers 
should use this information to evaluate the efficiency and effectiveness of the current 
waste management process, seeking opportunities to optimize and reduce both time 
and costs. 

Community: 

In the aftermath of the recent disaster, our community is faced with a significant 
challenge in managing the debris generated by the event. To ensure the safety, 
health, and well-being of our residents, it is crucial to properly address the large 
volume of waste that has accumulated. The waste in question is classified as 
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Municipal Solid Waste (MSW) and amounts to 1,500,000 cubic meters. To manage 
this waste, a well-planned and executed waste management process is necessary, 
which involves the use of five dedicated waste handling facilities. The transportation 
of this waste will be carried out using both road and rail services, ensuring that it is 
efficiently moved and disposed of in the most suitable locations. 

The process of handling and disposing of the debris involves several costs, which are 
necessary to ensure that our community can return to normalcy as quickly and safely 
as possible. The transportation of waste is one of the key expenses, which includes 
the cost of shipping the waste by truck and train to the appropriate facilities. 
Alongside transportation, there is a significant cost involved in properly disposing of 
the waste in a manner that is both environmentally responsible and compliant with 
regulations. Additionally, the wages of the workers who are responsible for handling 
and managing the waste must be accounted for, as their hard work and dedication 
are essential to the cleanup efforts. 

In addition to the financial aspects, the time it takes to complete the waste 
management process is also an important consideration. The transportation of the 
debris by vehicles takes 10 days, while the waste disposal process at the designated 
sites requires 188 days. The entire cleanup process is expected to span a total of 232 
days. This timeframe is essential to understand, as it helps our community plan for 
the recovery and rebuilding process while ensuring the safety and well-being of all 
residents. 

In summary, the recent disaster has left our community with a significant amount of 
debris, requiring a comprehensive waste management process. The costs associated 
with this process, including transportation, disposal, and labor, are necessary 
investments to ensure a safe and efficient cleanup. The time it takes to complete this 
process is also an important factor to consider, as it helps our community plan for the 
future. By working together and supporting the waste management efforts, we can 
overcome this challenge and restore our community to its former state. 

In this conceptual example, an NLP agent, such as GPT-4, was tasked with consuming a spreadsheet 
containing a range of values and text, inferring the content, and presenting the information in a 
contextually relevant manner for two separate audiences: decision-makers and the community. The 
agent (GPT-4) successfully transcribed the text and presented accurate factual information while 
adapting its tone specific to each audience (e.g., promoting alternate options for decision-makers, and 
emphasizing simplified explanations for the community). 

Additionally, the agent (GPT-4) effectively summarized the main points in the conclusion of each 
summary. However, there are certain limitations to consider. Although not directly emphasized in this 
example, the agent could lack knowledge of or sensitivity to the local community, which could result in 
text that comes across as impersonal or detached. Moreover, some technical aspects associated with 
waste transportation, such as implications of transporting waste across state lines or opportunities for 
improving the plan to reduce cost or time, were not identified in the agent's response. The agent would 
instead tell the decision maker to broadly consider the effectiveness and overall cost of the plan. 
However, the prompt could potentially be modified to address these specific needs. 
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Despite these limitations, this conceptual example demonstrates the potential of NLP agents like GPT-4 
in processing complex data and generating contextually relevant summaries for different audiences. The 
generated text can create a starting point that can be improved upon by the user, allowing for even 
more tailored content. By refining the prompt and incorporating additional domain-specific knowledge, 
the agent's capabilities can be further enhanced, ensuring that the generated summaries are both 
informative and attuned to the unique needs of each stakeholder group. 

3.2.2. Software or Code Writing 

AI has demonstrated considerable potential in the realm of software development, particularly in 
automating aspects of code writing and generating high-quality, maintainable code [25]. Machine 
learning, specifically deep learning techniques, have been applied to analyze, understand, and generate 
source code, improving the efficiency of software development processes and reducing the likelihood of 
introducing errors [26]. 

One prominent application of AI in code writing is through the use of neural machine translation (NMT) 
models, which have been adapted for code generation. These models can translate natural language 
descriptions of a problem or algorithm into source code [27]. For example, OpenAI's Codex, built on the 
GPT architecture, is capable of generating complex code snippets based on natural language prompts, 
demonstrating the potential of AI-assisted code writing [28]. Despite the advancements in AI-assisted 
code writing, challenges remain, such as ensuring the generated code is secure, maintainable, and 
adheres to best practices. Moreover, AI-generated code could still require human intervention and 
validation to ensure it meets the desired functionality and performance criteria [25]. 

In the context of disaster recovery, decision-makers and subject matter experts (SMEs) use models and 
decision support tools to facilitate decision-making and predict outcomes. Maintaining the associated 
code repositories requires significant resources, and compatibility issues can compel developers to 
quickly shift projects to address problems that would otherwise prevent the code from running. 
Furthermore, the application of AI-assisted software or code writing can be used to generate or bug-
check code that would otherwise take a substantial amount of time or resources to develop. This would 
allow developers and scientists to focus more on critical code areas or on the technical application of 
the code to achieve a desired effect. 

3.2.2.1. Conceptual Example – Code Writing 

In the following conceptual example, GPT-4 was applied to conduct code writing. The agent (GPT-4) was 
provided with a technical problem and instructions (e.g., prompt) on the desired code functionality. 
Based on the provided prompt, the agent generated code that was compatible with Python 3. In this 
particular use case, the agent was asked to generate code capable of visually describing the waste 
logistics table (referenced as Table 4 earlier in the text). Specifically, the agent's task involved writing 
Python code to read in the comma-separated values (CSV) file and its associated data and generate a 
HyperText Markup Language (HTML) file that could be locally opened to view the results of the CSV file, 
including bar charts that visually described the data. The agent was instructed to avoid using libraries or 
solutions that would require the user to download or connect to special software. The emphasis of this 
use case was to create custom code that could convert CSV files generated by models into a format that 
was easily shareable and could be opened using a simple web browser, rather than relying on 
proprietary spreadsheet software. 
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By generating code tailored to these specific requirements, the NLP agent demonstrated its potential in 
facilitating software development processes and addressing unique challenges within the disaster 
recovery domain. This use case further highlighted how AI-driven NLP models could be leveraged to 
automate code generation, improve the efficiency of software development, and create versatile 
solutions that cater to the needs of different stakeholders. 

Prompt: "Design a Python 3 script that generates a locally hosted HTML5 webpage 
displaying a table with data from a supplied CSV file. The page should not require any 
special libraries or services to run and should use pure HTML5. The script should be capable 
of inputting a CSV with the schema provided in the example. Create two bar charts on the 
page: one displaying total costs with the following variables: Total Transportation Cost, 
Total Staging Site Cost, Total Disposal Cost, Total Labor Cost, Total Vehicle Decon Cost, 
Total Cost Multiplier, and Total Cost; and another chart displaying the following variables: 
Vehicle Time to Complete, Destination Time to Complete, and Total Time Days. Label the 
bars on each chart, display the values to the right of each bar, and use different colors for 
each bar." 

In this conceptual example, the agent (GPT-4) was assigned the task of creating a Python script based on 
the previously described prompt. The agent successfully generated viable Python 3 code (refer to 
Appendix A for the source code). When executed, the code generated an HTML page compatible with 
any modern browser. Figure 6A displays an example of the table created using the CSV inputs as a 
reference, while Figure 6B presents a bar chart based on the prescribed values. The key emphasis in this 
conceptual example was the agent's ability to traverse multiple languages (e.g., Python and HTML5), 
ultimately resulting in successful code generation. This example demonstrated the effect NLP models 
can have on software development, as code can be dynamically generated based on a specified need or 
outcome. However, the importance of developers interpreting the generated code for security and 
efficiency purposes should not be underestimated. Simply generating and executing code without 
understanding its implications can lead to serious consequences. The role of developers remains 
essential in validating the code for safety, efficiency, functionality, and compliance with best practices. 
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Figure 6. Webpage generated by GPT code. 

3.2.3. Analyzing and Summarizing Scientific Research for Decision-Making 

The rapid growth of scientific research and the increasing volume of published articles present a 
significant challenge for decision-makers who should stay up-to-date with the latest findings in their 
field. AI has emerged as a powerful tool for analyzing and summarizing scientific research, enabling 
decision-makers to quickly access relevant information and make well-informed choices. AI-driven 
techniques, such as NLP and machine learning, have been employed to develop models capable of 
understanding complex scientific texts, extracting key information, and generating concise summaries 
[29]. 

One example of an AI model that has demonstrated exceptional performance in understanding and 
summarizing textual information is BERT (Bidirectional Encoder Representations from Transformers) 
(Google, Mountain View, CA, USA) [29]. BERT, and its variants, such as RoBERTa [30], have been widely 
used for a variety of NLP tasks, including question answering, named entity recognition, and sentiment 
analysis. By fine-tuning models such as these on domain-specific datasets, researchers can develop 
highly accurate summarization systems that can condense large volumes of scientific research into easily 
digestible summaries. In addition, AI-driven literature search engines, such as Semantic Scholar [31], 
employ advanced NLP techniques to index and retrieve relevant research articles, further aiding 
decision-makers in accessing pertinent information. However, AI is known to occasionally generate false 
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responses or hallucinations. Given that NLP models are extremely efficient at generating convincing text, 
users could inadvertently interpret data as truthful and potentially act on erroneous information. 

Using AI to analyze and summarize scientific research could have significant implications for decision-
making and research across various domains. In the context of disaster recovery, for instance, AI-driven 
summarization systems could help digest and summarize relevant technical information to quickly 
identify efficient solutions to support cleanup. These potentials could include identifying optimal 
environmental sampling approaches, generating sampling designs, determining appropriate 
decontamination options, and optimizing waste minimization outcomes. 

3.2.3.1. Conceptual Example – Summarizing Scientific Reports 

In this conceptual example, the agent (GPT-4) was tasked with summarizing a technical report titled "A 
Review of Biological Agent Sampling Methods and Application to a Wide-Area Incident Scenario to 
Characterize Time and Resource Demands" [32]. The goals of this example were twofold: 1) to 
determine if the agent could recall the text by merely mentioning the report title and author (GPT-4's 
knowledge cutoff date is September 2021), and 2) to determine if the agent could successfully recall 
quantitative values embedded within the report. The result of the first prompt, which asked the agent to 
summarize the publication by merely providing the agent with the associated title and author name, is 
presented below: 

Title: A Review of Biological Agent Sampling Methods and Application to a Wide-Area 
Incident Scenario to Characterize Time and Resource Demands 

This EPA report provides a comprehensive review of biological agent sampling 
methods and their application to a wide-area incident scenario. The aim of the study 
is to understand the time and resource demands associated with different sampling 
techniques when dealing with a large-scale biological contamination event. 

The report begins by outlining various sampling methods, including air, surface, and 
bulk sampling, as well as the advantages and limitations of each method. It also 
discusses the importance of determining appropriate sample sizes, locations, and 
collection frequencies to ensure accurate characterization of the contaminated area. 

The study then applies these sampling techniques to a hypothetical wide-area 
incident scenario involving the release of Bacillus anthracis spores. By assessing the 
time and resource demands of different sampling strategies, the report highlights the 
challenges of collecting, processing, and analyzing a large number of samples in a 
timely manner. 

The report concludes by emphasizing the need for improved sampling methods, 
streamlined laboratory processes, and better integration of sampling strategies with 
risk assessment and decision-making processes. This would allow for more efficient 
and effective response efforts in the event of a large-scale biological contamination 
incident. 

The agent (GPT-4) successfully summarized the document, but the summary lacked technical details. 
When asked to provide more detail related to sampling metrics, the agent acknowledged that it could 
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not find the requested information. For instance, when asked to provide more information on the time 
and cost metrics discussed in the aforementioned report, the agent acknowledged it could not locate 
this information. However, when the agent was supplied with the text directly (the methodology section 
(Section 4) of the report was made available to GPT-4), it successfully recalled the requested values, as 
shown below: 

This information presents the results of a hypothetical large-scale contamination 
scenario involving different environments: outdoor, indoor, and underground transit 
systems. The tables show the total number of samples, sample types, and estimated 
costs and time required for sampling and analysis in each environment. 

For the outdoor area (Tables 23 and 24), approximately 3,630,000 samples would 
need to be collected, costing about $1.9 billion and taking around 1.4 years to 
characterize. 

For the indoor area (Tables 25 and 26), around 26,300,000 samples would be 
required, with an estimated cost of $13.4 billion and a time requirement of 8.7 years 
for characterization. 

Finally, for the underground transit system (Tables 27 and 28), about 121,000 
samples would need to be collected. The cost for characterization is estimated at $1.4 
million, and the process would take roughly 34 days. 

The information highlights the time, labor, and financial demands of sampling and 
analyzing large-scale contamination events in various environments, emphasizing the 
need for efficient and effective response strategies. 

This conceptual example demonstrated that AI can successfully summarize and recall technical reports. 
However, specific details that could inform operational or research efforts might be lacking. When 
provided with the report directly, the agent (GPT-4) was able to describe the information in greater 
detail. For this process to function optimally, GPT-4 would likely benefit from direct internet access 
(currently, GPT-4 lacks access to the internet). As of the date of writing this report, there are indications 
that GPT-4 may soon allow for direct links that will enable access to documents, and therefore the 
summarization of entire documents. The agent GPT is not the only NLP capable of consuming and 
interpreting technical information; other models, such as BERT, also allow for large-scale interpretation 
of data from scientific documents.   

3.2.4. Optimizing Remediation Strategies and Resource Allocation 

The application of AI in optimizing remediation strategies and resource allocation has become 
increasingly relevant as environmental challenges continue to escalate. By leveraging advanced machine 
learning algorithms, AI models can analyze vast amounts of data to predict the potential effects of 
different remediation approaches and optimize the allocation of resources for improved environmental 
management [32]. The ability of AI to process complex information and generate robust solutions has 
led to enhanced decision-making in various environmental domains, such as contaminated site 
remediation, water resource management, and waste management. 
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In the field of disaster recovery, AI techniques such as symbolic regression have been utilized to identify 
efficient and cost-effective sampling strategies [32]. These methods can help determine optimal 
remediation sampling solutions by considering various factors associated with surface sampling and 
affected environments. Furthermore, in the context of waste management, AI has the potential to 
optimize collection and transportation routes, estimate waste generation rates, and predict the 
performance of waste treatment facilities, ultimately leading to reduced environmental effects and cost 
savings. The optimization of strategies and approaches using AI likely offers the greatest potential in the 
field of disaster recovery, as these decision points require rapid interpretation of large datasets within a 
short period of time, while identifying optimal outcomes. 

3.2.4.1. Conceptual Example –  Optimizing Remediation Strategies 

In this conceptual example, an NLP (GPT-4) was applied to a model-derived dataset to determine the 
optimal outcome when comparing two separate sampling scenarios. Tables 5 and 6 present the 
technical details associated with two proposed environmental sampling plans, referred to as Sampling 
Plan 1 and Sampling Plan 2. The primary difference between these plans is the number of samples (i.e., 
the extent of the sampling area is consistent for both plans), with an increase in samples in Sampling 
Plan 2 resulting in a tenfold increase in cost and time outcomes. The data contained within Tables 5 and 
6 were provided to the agent (GPT-4) as input. 

Table 5. Sampling Plan 1 and 2 Summary 

Plan Number 
of 

Samples 

Total 
Cost 

(USD - 
$) 

Total 
Time 

(days) 

Samplin
g Team 
Hours 

Days to 
Complete 
Sampling 

Sampling 
Labor 
Cost 

(USD - $) 

Sampling 
Material 

Cost 
(USD - $) 

Analysis 
Lab 

Hours 

100 
Samples 

Plan 

100 49207 4.2 21 4.2 8820 4687 70 

1000 
Samples 

Plan 

1000 492070 42 210 42 88200 46870 700 

Table 6. Sampling Plan 1 and 2 Summary Continued 

Plan 
Days to 

Complete 
Analysis 

Analysis 
Labor 
Cost 

(USD - 
$) 

Analysis 
Material 

Cost 
(USD - 

$) 

Total 
Sampled 
Area (ft2) 

Time to 
Prepare 

Kits 
(person 
hours) 

Time to 
Collect 

Samples 
(person 
hours) 

Total 
Waste 

Volume 
(L) 

Total 
Waste 
Weight 

(lb) 

100 
Samples 

Plan 
2.917 11800 23900 69443 12 9 10 430 

1000 
Samples 

Plan 
29.167 118000 239000 694442 120 90 100 4300 
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The summary provided by the agent (GPT-4) is displayed below. The agent successfully interpreted the 
given tables and offered valid considerations for enhancing the sampling plan. Although this scenario 
seems straightforward, it is important to note that the agent might not have encountered an extensive 
library of similar examples, yet it still successfully identified critical decision points such as confidence 
considerations and solutions for accelerating sample collection and analysis. However, the agent did not 
mention any specific considerations related to the level of confidence and its effect on the sampling 
design or the potential application of targeted sampling, which could potentially be achieved through 
refined prompting.  

The 100 Samples Plan has the advantages of lower costs, shorter time frames, and 
less waste generation. However, it may result in lower confidence and limited scope 
due to its smaller coverage of the area of interest. To improve this plan, consider 
optimizing sampling locations, using more efficient sampling techniques or 
equipment, and focusing on specific areas of interest. On the other hand, the 1000 
Samples Plan offers higher confidence and more comprehensive data by covering a 
larger area, but it comes with higher costs, longer time frames, and increased waste 
generation. To enhance this plan, consider increasing the sampling team size, 
negotiating bulk discounts on materials, implementing automated or semi-
automated sampling equipment, and exploring alternative cost-effective analysis 
methods. 

If high confidence is the primary goal, the 1000 Samples Plan is likely the more 
suitable choice due to its larger sample size and more extensive coverage. However, it 
is crucial to consider factors such as budget, time constraints, and environmental 
impact when selecting a plan. Implementing the suggested improvements for the 
chosen plan may help optimize the outcomes while addressing its limitations. 

3.3. Image Recognition and Generation 

Image recognition, also known as computer vision, is a field within AI that aims to enable computers to 
interpret and understand visual information from the surrounding world. This area encompasses 
techniques such as object detection, image segmentation, and facial recognition, among others [33]. AI-
driven image recognition techniques have been developed using deep learning models, particularly 
convolutional neural networks (CNNs), which have demonstrated exceptional performance in tasks such 
as object recognition and classification [34]. 

However, AI-based image generation refers to the process of creating new images or modifying existing 
ones using machine learning techniques. Generative models, like generative adversarial networks 
(GANs) and variational autoencoders (VAEs) have become increasingly popular for image generation 
tasks [9, 35]. These models can produce high-quality, diverse, and contextually relevant images, making 
them invaluable tools for various applications, including design and prototyping. More recently, AI 
models like DALL-E (OpenAI, San Francisco, CA, USA) have emerged, leveraging GPT-based architectures 
to generate images from textual descriptions [36]. An evolving risk linked to AI-generated visuals lies in 
their capacity to produce fabricated or altered images, unethically or improperly depicting individuals or 
scenarios. Cutting-edge image generation models are capable of creating highly realistic visuals, which 
could prove difficult to identify even when utilizing specialized detection software.  
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3.3.1. Improving Safety and Efficiency of Response Activities 

In recent years, AI has made significant advancements, especially in the realm of image generation. 
Machine learning models like DALL-E and stable diffusion have become increasingly capable of 
producing high-quality images suitable for diverse applications, such as supporting training and 
demonstrations. Employing AI-powered image generation tools would enable instructors and trainers to 
craft highly efficient, immersive learning experiences that reduce manual effort, promote innovative 
problem-solving techniques, and potentially yield more captivating and successful educational 
outcomes. 

Stable diffusion, another generative modeling technique, uses a noise model and denoising score 
matching3 to create intricate and realistic images. Both technologies can be used to support training and 
demonstrations by generating a wide range of visual concepts based on text inputs, making the 
development of training materials more efficient and streamlined [36]. In training and demonstration 
contexts, the generated images can function as interactive routes, tailored to particular decisions or 
outcomes, akin to a "Choose Your Own Adventure" learning approach. 

3.3.1.1. Conceptual Example –  Image Generation 

In the following conceptual example, image generation using DALL-E was applied to create distinct 
environments that target common scenarios associated with disaster recovery, such as pollution and 
contamination. The agent in this scenario (DALL-E) was tasked with rendering two separate 
environments: (1) a well-organized indoor environment for storing chemicals, and (2) a pristine small 
body of water. The agent was also tasked with rendering the inverse of these environments: (1) a 
cluttered and poorly maintained indoor environment for storing chemicals, and (2) a polluted small body 
of water. Each of the four prompts was fed separately into DALL-E (e.g., create a realistic image showing 
[environment description]). 

Figure 7 presents the outcome of these prompts. Specifically, Figure 7A and 7C depict clean and well-
maintained environments that could be considered optimal. In contrast, Figure 7B and 7D display the 
inverse of both environments, with clear signs of disorganization or pollution, respectively. Through this 
example, DALL-E demonstrated its capability to generate diverse and contextually relevant images for 
various environmental contamination-related scenarios.  

3 A noise model represents data variations, while denoising score matching trains models to distinguish clean data 
from distorted versions.  

https://usepa-my.sharepoint.com/personal/musson_steve_epa_gov/Documents/Profile/Desktop/Report%20Template/www.epa.gov/research


22 

Figure 7. DALL-E generated images: (A) a well-organized indoor environment for storing chemicals, (B) 
a cluttered and poorly maintained indoor environment for storing chemicals, (C) a pristine small body 
of water, and (D) a polluted small body of water. 

The conceptual example showcased the level of detail that image generation models can produce. 
Specifically, Figure 7A shows a clean, shiny floor reflecting light, as well as a well-organized arrangement 
of chemicals, and in some cases, protective bars preventing containers from toppling over. A similar 
level of detail can be seen in Figure 7B, in which poor lighting contributes to the decrepit conditions of 
the storage area. Barrels appear poorly maintained, with some lying on their side, and a pool of 
unknown liquid is on the floor to indicate potential contamination. Overall, this test generated realistic 
results that can be utilized to support training or data visualization in the context of environmental 
contamination scenarios.  

3.3.2. Image Recognition for Disaster Debris Characterization and Management 

The application of AI image recognition in characterizing disaster debris is an emerging area of research, 
driven by the increasing frequency and severity of natural and human-made disasters worldwide. This 
process involves using advanced machine learning techniques, such as CNNs and deep learning 
algorithms, to automatically analyze and classify various types of disaster debris captured in images, 
including building rubble, infrastructure components, and hazardous materials [37]. Implementing AI-
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based techniques in this field has the potential to significantly improve the accuracy and efficiency of 
disaster debris characterization, thereby enabling more effective disaster response and recovery efforts. 

One of the key applications of AI image recognition in disaster response and recovery lies in assessing 
structural damage following earthquakes, hurricanes, and other natural disasters. By analyzing high-
resolution aerial or satellite imagery, AI algorithms can identify and quantify the extent of damage to 
buildings and infrastructure, facilitating rapid damage assessment, and helping prioritize response 
efforts [38]. In addition to assessing damage and hazards, AI image recognition could be expanded to 
optimize debris removal and management efforts in the aftermath of disasters. For instance, AI 
algorithms could analyze images captured by unmanned aerial vehicles (UAVs) or ground-based cameras 
to estimate the volume, composition, and spatial distribution of disaster debris. This information could 
be used to inform debris management strategies, such as identifying suitable locations for temporary 
storage and processing facilities. Ultimately, the integration of AI image recognition in disaster debris 
characterization has the potential to greatly improve the process of managing and segregating debris. 

3.3.2.1. Conceptual Example –  Object Identification 

The following conceptual example applied Google's Vision AI to identify objects in imagery, with a range 
of environments and varying levels of difficulty. Figure 8A depicts a water's edge littered with plastic, 
wood, and other waste. Figure 8B illustrates a trailer house impacted by a large wind event. Figure 8C 
presents a pile of debris primarily consisting of bricks. Figure 8D features a picture of a dog against a 
white background. These images are assorted according to the level of detail, which ultimately infers the 
level of difficulty (with Figure 8A being the most difficult and Figure 8D being the least difficult). Table 7 
displays the results of the analysis, including the identified objects and their relevant scores (otherwise 
known as levels of confidence). Objects are sequenced according to the confidence in their 
identification.  

https://usepa-my.sharepoint.com/personal/musson_steve_epa_gov/Documents/Profile/Desktop/Report%20Template/www.epa.gov/research


24 

Figure (F) 
A Label FA Score FB Label FB Score FC Label FC Score FD Label FD Score 

Water 97% Plant 94% Brown 98% Dog 92% 

Figure 8. Assortment of images showing various objects and environments: (A) waste at the edge of a 
water body, (B) a trailer house with debris, (C) a pile of bricks, and (D) a dog against a white 
background.  

Table 7. Image Analysis Results 

Mountain 92% Sky 89% Wood 84% Carnivore 85% 

Blue 89% Wood 88% Brick 83% Companion 
dog 78% 

Sky 89% Branch 87% Building 
material 80% Dog breed 75% 

Pollution 85% Land lot 85% Event 72% Terrier 72% 

The conceptual example highlighted the ability and accuracy of AI, specifically in image recognition, for 
identifying objects within pictures. In this example, the agent correctly identified the primary objects in 
these images, with a few exceptions. Notably, in the FC label and score, the primary object was 
identified as "Brown," and the secondary object as "Wood," while the bricks shown in the image appear 
red (the "bricks" label is shown in the third row down), and no wood is visible in the image. Overall, this 
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test yielded accurate results and illustrated the capability of AI to rapidly (i.e., in a matter of seconds) 
identify objects or classify imagery appropriately.  

3.3.3. Image Synthesis in Design and Prototyping 

The fusion of OpenAI's DALL-E and GPT models has created a tool for generating imagery and detailed 
descriptions simultaneously. DALL-E has demonstrated potential in providing visual representations for 
prototyping visual designs. By using natural language prompts, scientists and engineers could quickly 
generate an array of visual concepts that can be easily refined and iterated upon. This approach could 
reduce the time and effort required in traditional design processes, allowing for greater exploration of 
design alternatives. 

The integration of GPT further enhances the design prototyping process. GPT can generate coherent, 
contextually relevant, and detailed descriptions, which DALL-E can transform into visual concepts. This 
combination of text description and image generation would enable designers to effectively 
communicate their design concepts and ideas, simplifying the collaborative process and ensuring that all 
potential design elements are fully considered. By using AI-generated descriptions, scientists and 
engineers could reduce ambiguities and ensure that the design intent is accurately conveyed to other 
stakeholders, such as emergency response personnel. However, similar to other aspects of AI, this 
design process could be affected by error propagation or hallucinations, as described in earlier sections, 
which could result in designs that are inconceivable from an engineering or materials perspective. 

The application of this capability is twofold: 1) it presents a method for operational experts to visually 
communicate designs or ideas by using an NLP to transform basic descriptions into well-engineered 
concepts; 2) from the research and development perspective, this approach allows for designs to be 
iterated based on a range of stakeholder needs (e.g., the NLP can be prompted based on an inventory of 
keywords and needs), resulting in hundreds of potential designs in a relatively short period of time. This 
approach holds significant potential in prototyping designs and technologies in realms that require quick 
turnaround and limited research budgets.  

3.3.3.1. Conceptual Example –  Design Prototyping 

In the following conceptual example, GPT-4 was asked to generate a detailed image prompt using 
specific design parameters. The text below presents the prompt employed to create the targeted 
design, as well as the response generated by GPT-4: 

Prompt: Create an AI image prompt for developing a 3D prototype that adheres to 
the following characteristics. The description should be approximately 400 
characters long. A plastic handheld scoopula that has rigid sides for cutting and a 
deep reservoir for collecting liquid. 

Response: Create a 3D prototype of a versatile plastic handheld scoopula, featuring 
rigid sides for precise cutting and a deep reservoir for efficient liquid collection. The 
design should be ergonomic, ensuring comfortable use, and incorporate a unique 
blend of aesthetics and functionality. The scoopula should be durable and easy to 
clean, catering to various applications in laboratories, kitchens, and other settings. 

https://usepa-my.sharepoint.com/personal/musson_steve_epa_gov/Documents/Profile/Desktop/Report%20Template/www.epa.gov/research


26 

The agent (GPT-4) was asked to modify the response, as the initial images showed a lack of raised edges 
necessary for cutting materials. Consequently, the revised response placed a greater emphasis on 
"cutting capabilities."  

Prompt: Recreate this, but emphasize the saw-like appearance of the scoopula for 
cutting 

Response: Design a 3D prototype of a plastic handheld scoopula, showcasing a 
distinct saw-like ridge on its sides for effective cutting capabilities. The scoopula 
should have a deep reservoir for effortless liquid collection, while maintaining an 
ergonomic and visually appealing design. With its unique, saw-like appearance and 
versatile functionality, this scoopula is perfect for diverse environments such as 
laboratories, kitchens, and more, offering both durability and ease of cleaning. 

The prompts were inputted into DALL-E, resulting in a series of images shown in Figure 9. Figures 9A-B 
display different iterations of the first prompt, featuring a deep reservoir and curved tip that would 
enable liquid grab samples. However, neither design included any features suitable for cutting. Figures 
9C-D depict the outcomes of the second prompt iteration, clearly exhibiting razor or rigid edges that 
could be used for sampling. In particular, Figure 9C shows promise as it incorporates both a reservoir 
and a cutting apparatus. 

All four results demonstrated the ability of image generation tools like DALL-E to create highly detailed 
3D imagery that reflects specific design elements. Furthermore, the demonstration highlighted the 
ability of GPT-4 to enhance the prompt to allow for improved design and engineering considerations. 
Overall, this example resulted in viable designs; however, it might take multiple iterations of prompts or 
image generation to identify a suitable prototype that meets the design requirements. 
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Figure 9. Grab sampling scooper prototypes: (A) first iteration of rounded edge scoop from first 
prompt, (B) second iteration of rounded edge scoop from first prompt, (C) first iteration of saw-edge 
scoop from second prompt, and (D) second iteration of saw-edge scoop from second prompt. 
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4. Discussion

AI could greatly benefit the field of disaster recovery, which encompass complex interrelated processes 
requiring specialized expertise and intricate decision-making strategies. In this study, the role of AI in 
disaster recovery was explored by reviewing pertinent literature and employing key AI components, 
such as NLP and image processing techniques, to prevalent scenarios. An analysis of approximately 500 
papers revealed limited literature on this topic, with most publications focusing on environmental 
research and disaster logistics. The findings provide a general understanding of the current research 
state and the technologies being used. The literature review introduced key aspects of NLP and image 
analysis (e.g., image recognition and generation). Four potential NLP capabilities were highlighted: 
enhancing communications, code writing, interpreting scientific material, and strategy optimization. As 
an example of enhancing communications, GPT-4 was applied to a debris management scenario. The 
conceptual example demonstrated AI's ability to process complex data and generate contextually 
relevant summaries for different audiences. However, it is important to recognize NLP agents' 
limitations pertaining to public communications, such as lack of regional understanding or cultural 
sensitivities. 

The study also showcased the effect NLP models could have on software development, with AI-assisted 
code writing providing dynamic code generation based on specific needs or outcomes. Developers' role 
in interpreting and validating the generated code for security, efficiency, and best practices compliance 
remains crucial. AI-driven summarization systems can identify efficient solutions for cleanup, waste 
minimization, and other aspects of environmental management quickly. While NLP agents like GPT-4 can 
summarize and recall technical reports, they might lack specific details that inform operational or 
research efforts. Specialized access to the Web or by accessing reports directly could enhance the 
agent's capabilities. 

The image analysis section highlighted three potential AI capabilities: visualizing training scenarios, 
debris recognition, and design prototyping. In each example, a combination of DALL-E and GPT-4  were 
applied to relevant disaster recovery applications. The study provided a conceptual example of AI-
generated images, showcasing their potential use in creating immersive learning experiences. 
Furthermore, AI image recognition demonstrated the ability to characterize debris from static imagery 
that has the potential to optimize future debris characterization efforts. Lastly, AI could help engineers 
and operational experts communicate designs and iterate based on stakeholder needs, generating 
numerous potential designs quickly. Advanced image generation tools, such as DALL-E, are capable of 
producing intricate 3D visuals that accurately represent specific design elements. Nevertheless, it might 
be necessary to undergo several iterations to pinpoint an optimal prototype that fulfills the desired 
design criteria. 

Building on the successful integration of AI in the aforementioned conceptual examples and considering 
the growing potential for AI to be further incorporated into a wide range of sectors and workflows, it 
becomes crucial to comprehend emerging advancements, their implications, as well as the obstacles and 
challenges that organizations and the workforce might encounter due to AI adoption. The subsequent 
sections offer an overview of these topics. 

4.1. Emerging Developments and Impacts 
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The advent of AI as a useful and widely available technology has undeniably become a transformative 
force in various industries [39]. Although still in the early stages of development, the potential effect of 
AI on creativity, writing, and technical capacities of individuals cannot be understated. With the rapid 
pace of advancements, AI tools are expected to proliferate, eventually becoming central to business and 
mission strategies for organizations worldwide [40]. For instance, a surge in AI-related repositories on 
GitHub was observed. As of April 2023, all trending GitHub repositories were related to AI, which 
demonstrated the increasing interest and investment in this technology by the development community 
[41]. However, the widespread adoption of AI as an integral part of various sectors also raises concerns 
about potential ethical and societal implications. Organizations should establish robust systems for 
maintaining and updating guidance to ensure transparency and privacy in AI applications. Furthermore, 
as AI applications become more embedded in the daily lives of individuals and organizations, education 
and upskilling in AI-related fields might be needed. Ensuring that individuals have access to the 
necessary resources and training to harness the benefits of AI might be needed to mitigate potential skill 
gaps and foster a workforce that can adapt to the rapidly evolving technological landscape.  

Having evaluated the current state and potential applications of AI within the domain of disaster 
recovery, the subsequent section delves into the broader near-term and long-term applications of AI. By 
evaluating both immediate and future use cases, a deeper understanding of the potential outcomes can 
be gained, along with the development of strategies for effectively harnessing the benefits of AI across 
various applications. 

Near-Term Applications (1-2 years): 

• Document editing: enhance document editing by automatically detecting grammar and spelling
errors, suggesting improved phrasing, and ensuring coherent structure and flow. AI would likely
adapt writing styles to target specific audiences or meet predefined guidelines, streamlining the
editing process and improving overall document quality.

• Digital assistants: employ AI to understand natural language queries, perform tasks, and provide
personalized recommendations. AI could enable digital assistants to learn user preferences and
habits over time, allowing for proactive assistance and increasingly accurate and relevant
responses.

• Image and video generation: create realistic visual content based on textual descriptions, user
inputs, or existing images and videos. Generative models like GANs and VAEs could produce
high-quality visuals for applications such as advertising, entertainment, and design, enabling
rapid prototyping and creative exploration.

• Assisted programming: leverage AI to provide code suggestions, error detection, and automatic
code generation based on specific needs or outcomes, which could result in increased efficiency,
fewer bugs, and a more streamlined development process, allowing developers to focus on
higher-level tasks and problem-solving.

• Internet searching: search engines could become synonymous with AI as they leverage the
technology to enhance their capabilities. As AI-powered search engines become more prevalent,
the need for traditional keyword-based search methods might diminish, paving the way for
more contextually aware and personalized search experiences.
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• Literature review: efficiently analyze vast amounts of data, extract relevant information, and
summarize findings. Assisted searches could enable rapid identification of key resources, while
AI-generated reviews could provide an accessible overview of existing research, streamlining the
knowledge acquisition process.

• System integration: integration of AI platforms with various online services through application
programming interfaces (APIs) could enhance communication and facilitate seamless
interactions between diverse systems. Such integration between AI platforms and other online
services could lead to greater automation. For example, AI could be tasked with performing a
search using a specific keyword, subsequently generating a list of related keywords based on the
initial results. The system could then retrieve pertinent information and efficiently summarize
the findings, streamlining the entire process that spans multiple systems and services.

Long-Term Applications (5-10 years): 

• Human/AI integration: AI might be used to augment human capabilities and improve decision-
making by providing insights and recommendations based on real-time data analysis. AI could
also be integrated into wearable technologies to enhance physical abilities and health
monitoring. AI-driven brain-computer interfaces could allow direct communication between the
human brain and machines, opening up new possibilities for interaction and control.

• User interface (UI) and system interactions: AI could be applied to create more intuitive and
personalized user interfaces, enabling systems to understand and predict user preferences and
needs. Natural language processing would allow users to interact with systems through speech
or text, making it more accessible for a wider range of people. AI could also learn from user
behavior to improve system performance and usability over time.

• Fully autonomous agents: AI could be employed to develop intelligent agents that operate
independently, making decisions and taking actions without human intervention. These
autonomous agents could be used in a wide range of applications, such as self-driving vehicles,
autonomous drones, and robotic assistants. They could revolutionize industries by increasing
efficiency, safety, and reducing the need for human labor in repetitive or hazardous tasks.

4.2. Barriers and Challenges 

Despite the myriad of promising opportunities outlined here, several persistent challenges and barriers 
remain. The accumulation and utilization of extensive data sets raises questions about user privacy and 
security. Simultaneously, ethical dilemmas, such as the potential misuse of AI for nefarious purposes, 
necessitate thorough deliberation. These barriers and challenges might limit the application of AI and 
would likely require policy frameworks and guidelines to establish acceptable use. Therefore, the 
following impediments should be considered: 

• Data privacy: protection of personal information used to train and operate AI systems. Ensuring
data privacy involves addressing concerns related to the collection, storage, and usage of
personal data, as well as potential breaches that might compromise user privacy. Responsible AI
development should incorporate privacy-preserving techniques, such as differential privacy and
federated learning, to minimize the risks of unauthorized access, data misuse, and potential
harm to individuals.
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• Algorithmic bias: presence of unfair or discriminatory outcomes generated by AI systems, often
as a result of biased training data or flawed algorithm design. Such biases can perpetuate and
exacerbate existing social inequalities, leading to unfair treatment of specific groups or
individuals. Addressing algorithmic bias involves developing methods for identifying, measuring,
and mitigating these biases to ensure that AI systems produce fair and equitable outcomes.

• Transparency: ability to understand and interpret the decision-making processes of AI systems.
Achieving transparency would be crucial for fostering trust, enabling users to comprehend AI-
generated outcomes, and facilitating the identification of potential biases or errors. Techniques
such as explainable AI (XAI) and interpretable machine learning models aim to enhance
transparency by providing insights into the inner workings of AI systems and the rationale
behind their decisions [42].

• Accountability: establishing mechanisms to hold AI developers, operators, and users responsible
for the consequences of AI system decisions and actions. Ensuring accountability would be
essential for promoting ethical AI use, preventing potential harm, and addressing any negative
consequences that arise from AI deployment. Establishing clear guidelines, regulatory
frameworks, and monitoring mechanisms would help attribute responsibility and enforce
accountability in AI systems.

• Weaponization of AI: development and use of AI technology in military and offensive
applications, such as autonomous weapons or surveillance systems. The weaponization of AI
raises ethical, legal, and security concerns, as it can lead to unintended consequences, increased
risk of conflict, or misuse by malicious actors. Addressing these concerns involves developing
international norms, policies, and agreements that regulate the use of AI in military and policing
contexts and promote responsible AI development for the benefit of humanity.

• Hallucinations: instances where the model generates outputs that are not grounded in the input
data or real-world knowledge [19]. These outputs might seem plausible but are, in fact,
erroneous or nonsensical. Hallucinations can occur due to limitations in the AI model's
understanding, training data biases, or the model's tendency to create outputs that seem
contextually appropriate [19]. Addressing hallucinations in AI systems would be necessary to
improve their reliability and fact checking across various domains.

• Ethics: moral implications and responsible practices associated with the development and
deployment of artificial intelligence. Key concerns in this area encompass issues such as biases
and discrimination, which could arise due to unfair algorithms, transparency and interpretability
for accountable AI systems, privacy, and surveillance as they relate to the protection of
individual rights, job displacement stemming from AI-driven automation, and the concentration
of power, which explores the risks of misuse and manipulation by influential entities.

• Workforce: AI is poised to have significant effects on the workforce, transforming various
industries and job roles. According to recent research, fields that will experience the most
significant effects include legal services, office and administrative support, social sciences, art
design and entertainment, engineering, and business finances [40]. As AI systems become more
advanced and integrated into these sectors, they would likely reshape job roles, creating new
opportunities, potentially displacing some workers. Navigating these changes might require a
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focus on reskilling, continuous learning, and adapting to an evolving job market to ensure a 
sustainable and equitable future for the workforce. 
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5. Conclusion

In conclusion, this report aimed to explore the potential of AI in disaster recovery and environmental 
remediation by addressing five main objectives. First, a historical overview of AI was provided, 
illustrating its potential to revolutionize various sectors, including disaster recovery. Second, a meta-
analysis of AI-related literature was conducted, revealing a limited number of studies in the context of 
environmental remediation and disaster recovery. Third, two primary research areas, NLP and image 
analysis, were identified as having the potential to greatly benefit from AI integration. Fourth, a series of 
conceptual examples were presented to demonstrate the potential of AI in addressing common disaster 
recovery tasks and challenges. These examples showcased the capabilities of NLP in enhancing 
communications, code writing, interpreting scientific material, and strategy optimization, as well as 
image analysis in visualizing training scenarios, debris characterization, and design prototyping. Finally, 
the report examined emerging developments and potential impediments that could influence the 
adoption of AI in the public sector, emphasizing the importance of establishing policy frameworks and 
guidelines to ensure ethical applications and data privacy. 

This study highlighted the potential of AI to revolutionize the work environment and complex 
undertakings such as disaster recovery and environmental remediation. While research in this domain is 
still limited, the conceptual examples and identified research areas underscore the need for further 
exploration and development of AI applications. By addressing the existing barriers and challenges 
associated with the deployment and utilization of this technology, AI has the potential to bring about 
revolutionary changes across various sectors, including disaster recovery and environmental 
remediation. 
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7. Glossary

Adversarial networks: Neural networks designed to compete against each other, typically involving a 
generator and a discriminator, used frequently in generative models. 

Artificial intelligence (AI): The capability of machines to imitate human intelligence and perform tasks 
that typically require human intelligence. 

Artificial neural networks: Computational models inspired by the structure and functions of biological 
neural networks, designed to recognize patterns. 

Corpus linguistics: The study of language as expressed in corpora (large and structured sets of texts) to 
identify linguistic patterns. 

Hallucination: In AI, it refers to the generation of data or patterns that were not in the training data, 
often seen as a form of over-interpretation. 

Machine learning: A subset of AI that allows computers to learn from and make predictions or decisions 
based on data without being explicitly programmed for the task. 

Natural language generation (NLG): The process of producing meaningful phrases and sentences in the 
form of natural language from some internal representation. 

Natural language processing (NLP): A field of AI that focuses on the interaction between computers and 
humans through natural language. 

Natural language understanding: A subfield of NLP that focuses on the comprehension and 
interpretation of human languages by machines. 

Neural machine translation: The use of deep learning models, particularly neural networks, to translate 
between different languages. 

Sentiment analysis: The use of NLP to determine and extract subjective information, such as the 
sentiment or emotion of a piece of text. 

Tokenization: The process of converting a sequence of text into individual tokens, typically words, 
phrases, or other meaningful elements. 

Vectorization: The process of converting non-numeric data, especially text, into a numerical format or 
vector to facilitate computational processing. 

Variational autoencoders: A type of generative model that learns a probabilistic mapping between data 
and a latent space, often used in unsupervised learning scenarios. 
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