

AOP-Wiki 3.0 Idea Generation and Discussion Workshop August 16th, 2023

Nate Pollesch, PhD USEPA Office of Research and Development - Duluth, MN

Disclaimer: The views expressed in this presentation are those of the author(s) and do not necessarily represent the views or policies of the Agency. Any mention of trade names or commercial products does not constitute EPA endorsement or recommendation for use.

> Extracting and benchmarking emerging adverse outcome pathway knowledge *ToxSci* 2019

- Pollesch, NL; Villeneuve, DL; O'Brien, JM

Assessing quality of emergent adverse outcome pathways *Work in Progress*

- Pollesch, NL; Olker, JH; Wang, R-L

MIE: Molecular Initiating Event KE: Key Event AO: Adverse Outcome

Linear pathway MIE 1 KE 1 AO 1 Node: Key Event (KE) Edge: Key Event Relationship (KER)

MIE: Molecular Initiating Event KE: Key Event AO: Adverse Outcome

- Building the Network
 - Key event relationship info was downloaded from AOPwiki.org and was used to create an edge list
 - The edge list was converted to a graph using *igraph* package in R Studio

- Building the Network
 - Key event relationship info was downloaded from AOPwiki.org and was used to create an edge list
 - The edge list was converted to a graph using *igraph* package in R Studio

					-			1			
arch re	elationships	Search	Find by ID	Find by ID)			A			
Maria	والمتعالمة والمتعالم والمستعاد	"ld-+-"									
Navig	Jational tip: click on	leads to or t	the ID column to navigate to t	the KE Kelau	onsnip.						
E Re	alationships										
ld	Upstream Event 🔺				Relationship Type	Downstream Event					
5	Reduction, 17beta-	estradiol synt	hesis by ovarian granulosa cel	lls	leads to	Reduction, Plasma 17beta-estradiol concentrations					
Э	Decreased, 3-hydro	xyacyl-CoA d	lehydrogenase type-2 activity		leads to	Decreased, Mitochondrial fatty acid beta-oxidation					
750	Activation, 5HT2c				leads to	N/A, Unknown					
1857	ACh Synaptic Accur	nulation			leads to	Activation, Muscarinic Acetylcholine Receptors					
154	ACh Synaptic Accur	nulation			leads to	Increased, Atrioventricular block and bradycardia					
456	ACh Synaptic Accur	nulation			leads to	Increased Cholinergic Signaling					
459	ACh Synaptic Accur	nulation			leads to	AchE Inhibition					
11	AchE Inhibition				leads to	ACh Synaptic Accumulation					
2653	AchE Inhibition				leads to	Activation of Cyp2E1					
149	AchE Inhibition				leads to	Increased, Atrioventricular block and bradycardia					
450	AchE Inhibition				leads to	Respiratory distress/arrest					

- Building the Network
 - Key event relationship info was downloaded from AOPwiki.org and was used to create an edge list
 - The edge list was converted to a graph using *igraph* package in R Studio

- Graph attributes assigned to each KE and KER
 - KE: KE ID, AOP ID, designator (MIE, KE, AO), and Level of biological organization (LOBO)
 - KER: KER ID, AOP ID, weight of evidence (WOE), and quantitative understanding (QE)

AOP 1

AOP 1

AOP 1

Networked AOP via KE 1 Sharing

This KE sharing example had

- 2 AOPs
- 3 unique expertspecified linear AOPs
- 2 unique emergent AOPs

Our Analysis showed that the AOP-Wiki had

- 187 AOPs
- 471 unique expertspecified linear AOPs
- 9405 unique emergent linear AOPs

Our Analysis showed that the AOP-Wiki had

- 187 AOPs
- 471 unique expertspecified linear AOPs
- 9405 unique emergent linear AOPs

Our Analysis showed that the AOP-Wiki had

- 187 AOPs
- 471 unique expertspecified linear AOPs
- 9405 unique emergent linear AOPs

We found them, but are they useful?

Extracting and benchmarking emerging adverse outcome pathway knowledge *ToxSci* 2019 - Pollesch, NL; Villeneuve, DL; O'Brien, JM

Assessing quality of emergent adverse outcome pathways *Work in Progress* - Pollesch, NL; Olker, JH; Wang, R-L

Assessing quality of emergent adverse outcome pathways *Work in Progress* - Pollesch, NL; Olker, JH; Wang, R-L

In 2020, Rong-Lin Wang (CCTE/GLTED) showed that semantic analysis provides a method for quantifying the quality of AOPs based on semantic coherence

Assessing quality of emergent adverse outcome pathways *Work in Progress* - Pollesch, NL; Olker, JH; Wang, R-L

In 2020, Rong-Lin Wang (CCTE/GLTED) showed that semantic analysis provides a method for quantifying the quality of AOPs based on semantic coherence

This is a method of converting expressions into logical definitions and looking at similarity/closeness of those definitions to one another based on their structured content

From Wang, (2020)

• A logical definition here is defined as several phenotypic expressions composed of more atomic terms from multiple reference ontologies and linked together by appropriate object properties from the Relations Ontology.

From Wang, (2020)

- A logical definition here is defined as several phenotypic expressions composed of more atomic terms from multiple reference ontologies and linked together by appropriate object properties from the Relations Ontology.
- There are many reference domain ontologies developed thus far, such as the Gene Ontology, Chemical Entities of Biological Interest Ontology, Cell Ontology, Phenotype and Trait Ontology, and various anatomy ontologies (http://obofoundry.org/).

Rong-Lin did this for all the KEs in the AOP-wiki. Once these definitions were created, he could then look at semantic similarity of KEs and AOPs

Semantic similarity networks of AOPs, CSPPs, genes, pathways, and diseases (Wang, 2020)

Rong-Lin did this for all the KEs in the AOP-wiki. Once these definitions were created, he could then look at semantic similarity of KEs and AOPs

> Figure 2a: Pairwise similarities of logical KE definitions (Wang, 2020)

Rong-Lin did this for all the KEs in the AOP-wiki. Once these definitions were created, he could then look at semantic similarity of KEs and AOPs

> Figure 2a: Pairwise similarities of logical KE definitions (Wang, 2020)

INTED STATES ON PUPP

I was excited to learn about Rong-Lin's work and asked him if he would be able to use his methods on the emergent AOPs that we found in Pollesch et al., (2019)

I was excited to learn about Rong-Lin's work and asked him if he would be able to use his methods on the emergent AOPs that we found in Pollesch et al., (2019)

He agreed and ran the analyses on the nearly 10000 LAOPs I sent

20 of 471 expert-specified LAOPs identified in Pollesch et al., (2019)

\square	Α	В	С	D	E	F	G	Н	1	J
1	1	2	3	4	5	6	7	8	9	10
2	888	887	177	889	890	896				
3	888	887	177	890	896					
4	103	1264	1265	988	1266	1267	1268	993	990	351
5	998	1000	858	859	860	861	862	863	864	
6	998	1000	858	860	861	862	863	864		
7	998	1000	858	861	862	863	864			
8	408	3	219	405						
9	408	3	219	405	406					
10	667	64	669	682	616	613				
11	201	195	52	381	55	188	352			
12	201	195	52	381	55	188	352	341		
13	201	195	52	381	382	385	386	341		
14	201	195	52	381	383	385	386	341		
15	201	195	52	381	55	385	386	341		
16	97	155	185	336						
17	97	185	336							
18	97	336								
19	12	10	444	351						
20	12	10	39	445	351					
1	12	351								
4	12	351								
	12	10	39	445	351					
	12	10	444	351						

I was excited to learn about Rong-Lin's work and asked him if he would be able to use his methods on the emergent AOPs that we found in Pollesch et al., (2019)

He agreed and ran the analyses on the nearly 10000 LAOPs I sent

> 20 of 471 expert-specified LAOPs identified in Pollesch et al., (2019)

> > 20 of 940 LAOPs ic Pollesch

1	А	В	С	C		E	F		G	H	1	1		J			
	1	2		3	4	5		6		7	8		9		10		
	888	887		177	889	890		896									
	888	887		177	890	896											
	103	1264	1	265	988	1266	1	267	126	8	993		990		351		
	998	1000		858	859	860		861	86	2	863		864				
	998	1000		858	860	861		862	86	3	864						
	998	1000		858	861	862		863	86	4							
	408	3		Δ	B		C	D		F		F	G		н		
	408	3	1	1)	2		4	5		6	0	7		2 9	10
	667	64	2	888	88	7	177		55	188		890		, 896		,	1
	201	195	3	888	88	7	177		55	352		188		890	896	5	
	201	195	4	888	88	7	177		889	890		188		55	352)	
_	201	195	5	888	887	7	177		889	890		188		352		-	
	201	195	6	888	88	7	177		890	188		55		352			
	201	195	7	888	88	7	177		890	188		352					
	97	155	8	888	887	7	177		55	188		352					
	97	185	9	888	887	7	177		55	352							
	97	336	10	888	887	7	177		889	890		188		55	352	341	
	12	10	11	888	887	7	177		889	890		188		55	352	2 618	341
	12	10	12	888	887	7	177		889	890		188		55	385	386	341
	12	351	13	888	887	7	177		889	890		188		55	386	5 341	
1	12	351	14	888	887	7	177		889	890		188		352	341	L	
	12	10	15	888	887	7	177		889	890		188		352	618	341	
	12	10	16	888	887	7	177		890	188		55		352	341	L	
~	76	336	17	888	887	7	177		890	188		55		352	618	341	
J	8 emei	rgent	18	888	887	7	177		890	188		55		385	386	5 341	
e	entified	l in Teel	19	888	887	7	177		890	188		55		386	341	L	
Ì		2010)	20	888	887	7	177		890	188		352		341			
e	et al., (<i>i</i>	2019)	21	888	887	7	177		890	188		352		618	341	L	
			4	888	88.	1	177		890	188		352		618	341		
			20	888	88.	7	177		890	188		352		341			
							177			188							

AND BEAM AND THE AND T

He agreed and ran the analyses on the nearly 10000 LAOPs I sent

The results from the first round of analyses are exciting

Assessing quality of emergent adverse outcome pathways *Work in Progress* - Pollesch, NL; Olker, JH; Wang, R-L

He agreed and ran the analyses on the nearly 10000 LAOPs I sent

The results from the first round of analyses are exciting

Semantic analysis metrics

For an AOP with N KEs, $AOP_N = KE_1 \rightarrow KE_2 \rightarrow \cdots \rightarrow KE_N$, and with $SS(KE_x, KE_y) \in [0,1]$ as the semantic similarity between KEs x and KE y:

$$-SSS_{Mean}(AOP_N) = \frac{1}{N-1} \sum_{i=1}^{N-1} SS(KE_i, KE_{i+1})$$

$$-SSS_{Min}(AOP_N) = \min_{i=1,\dots,N-1} SS(KE_i, KE_{i+1})$$

$$-PSS_{Mean}(AOP_N) = \frac{1}{\binom{N}{2}} \sum_{i < j} SS(KE_i, KE_j) \text{ for } i, j \in \{1, \dots, N\}$$

Where KE_1 is the *MIE* and KE_N is the *AO*. Each metric captures different AOP semantic qualities

He agreed and ran the analyses on the nearly 10000 LAOPs I sent

The results from the first round of analyses are exciting

Semantic analysis metrics

For an AOP with N KEs, $AOP_N = KE_1 \rightarrow KE_2 \rightarrow \cdots \rightarrow KE_N$, and with $SS(KE_x, KE_y) \in [0,1]$ as the semantic similarity between KEs x and KE y:

$$-SSS_{Mean}(AOP_N) = \frac{1}{N-1} \sum_{i=1}^{N-1} SS(KE_i, KE_{i+1})$$

$$-SSS_{Min}(AOP_N) = \min_{i=1,\dots,N-1} SS(KE_i, KE_{i+1})$$

$$-PSS_{Mean}(AOP_N) = \frac{1}{\binom{N}{2}} \sum_{i < j} SS(KE_i, KE_j) \text{ for } i, j \in \{1, \dots, N\}$$

Where KE_1 is the *MIE* and KE_N is the *AO*. Each metric captures different AOP semantic qualities

Assessing quality of emergent adverse outcome pathways *Work in Progress* - Pollesch, NL; Olker, JH; Wang, R-L

He agreed and ran the analyses on the nearly 10000 LAOPs I sent

The results from the first round of analyses are exciting

Semantic analysis metrics

For an AOP with N KEs, $AOP_N = KE_1 \rightarrow KE_2 \rightarrow \cdots \rightarrow KE_N$, and with $SS(KE_x, KE_y) \in [0,1]$ as the semantic similarity between KEs x and KE y:

 $-SSS_{Mean}(AOP_{N}) = \frac{1}{N-1} \sum_{i=1}^{N-1} SS(KE_{i}, KE_{i+1})$ $-SSS_{Min}(AOP_{N}) = \min_{i=1,\dots,N-1} SS(KE_{i}, KE_{i+1})$ $-PSS_{Mean}(AOP_{N}) = \frac{1}{\binom{N}{2}} \sum_{i < j} SS(KE_{i}, KE_{j}) \text{ for } i, j \in \{1, \dots, N\}$

Where KE_1 is the MIE and KE_N is the AO. Each metric captures different AOP semantic qualities

Results

	SSS_{Mean}	SSS_{Min}	PSS_{Mean}
AOP: Mean (n=236)	0.153ª	.025	0.151 ^b
• Max (ID)	• 0.553 (66)	• 0.421 (41)	• 0.391 (66)
EAOP: Mean (n=9408)	0.144 ^a	.007	0.141 ^b
• Max (ID)	• 0.409 (9402)	• 0.319 (°)	• 0.424 (9403)

^{a,b} Difference in means not statistically significant ($\alpha = 0.05$) ^c 12 EAOPs tied for the maximum SSS_{Min} value: 6761, 6762, 6766, 6767, 6768, 6772, 6778, 6784, 9401, 9402, 9403, 9404. Note: EAOP IDs were assigned for analysis purposes and details of specific EAOPs can be shared upon request

Assessing the quality of emergent AOPknowledge Semantic similarit

He agreed and ran the analyses on the nearly 10000 LAOPs I sent

The results from the first round of analyses are exciting

Semantic analysis metrics

For an AOP with N KEs, $AOP_N = KE_1 \rightarrow KE_2 \rightarrow \cdots \rightarrow KE_N$, and with $SS(KE_x, KE_y) \in [0,1]$ as the semantic similarity between KEs x and KE y:

 $\begin{aligned} -SSS_{Mean}(AOP_N) &= \frac{1}{N-1} \sum_{i=1}^{N-1} SS(KE_i, KE_{i+1}) \\ -SSS_{Min}(AOP_N) &= \min_{i=1,\dots,N-1} SS(KE_i, KE_{i+1}) \\ -PSS_{Mean}(AOP_N) &= \frac{1}{\binom{N}{2}} \sum_{i < j} SS(KE_i, KE_j) \text{ for } i, j \in \{1, \dots, N\} \end{aligned}$

Where KE_1 is the MIE and KE_N is the AO. Each metric captures different AOP semantic qualities

Assessing quality of emergent adverse outcome pathways *Work in Progress* - Pollesch, NL; Olker, JH; Wang, R-L

Semantic similarity metrics for AOPs and EAOPS

The results from the first round of analyses are exciting

Why?

If these results hold up, that means that we have computationally identified (likely to be thousands of) unique emergent AOPs that are of high semantic quality

If these results hold up, that means that we have computationally identified (likely to be thousands of) unique emergent AOPs that are of high semantic quality

So, what is next?

So, what is next?

- Manual inspection of computational results
 - Are there patterns in highly coherent LAOPs
 - Do these results pass the sniff test?
 - Identifying a few of the outstanding emergent LAOPs to use as case studies

So, what is next?

- Manual inspection of computational results
 - Are there patterns in highly coherent LAOPs
 - Do these results pass the sniff test?
 - Identifying a few of the outstanding emergent LAOPs to use as case studies

We are also comparing how other metrics of quality compare to semantic quality metrics

What aspects of the AOP-Wiki enabled these analyses?

Emergent AOP:

Graph attributes assigned to each KE and KER

- KE: KE ID, AOP ID, and designator (MIE, KE, AO)
- KER: KER ID, AOP ID, weight of evidence (WOE), and quantitative understanding (QE)

Assessing quality of emergent adverse outcome pathways *Work in Progress* - Pollesch, NL; Olker, JH; Wang, R-L

Assessing quality of emergent adverse outcome pathways *Work in Progress* - Pollesch, NL; Olker, JH; Wang, R-L

Emergent AOP:

Graph attributes assigned to each KE and KER

- KE: KE ID, AOP ID, and designator (MIE, KE, AO)
- KER: KER ID, AOP ID, weight of evidence (WOE), and quantitative understanding (QE)

Semantic Analysis: KE descriptions and supplementary information on applicability

What aspects of these analyses could be useful in the AOP-Wiki?

Emergent AOP:

- How involved are KEs in emergent AOPs? (We calculated this)

- High quality emergent AOPs could be identified, evaluated for quality, and added explicitly to the AOP-Wiki **Semantic Analysis:**

- Semantic Similarity Scores for all KERS and for any pair of KEs in the WIKI
- Semantic similarity metrics for all AOPs
- Suggested KEs for developers (based on high SS scores)

If you have questions

Please reach out to me at <u>Pollesch.Nathan@epa.gov</u> with any questions.

280 EmergingAOP1869

AOP155

AOP18

AOP18

AOP42

0.995898

0.991449

0.991449

262 AOP158

263 userAOP94

264 userAOP95

EXTRA:

So, what can we do with AOP networks?

- That depends on the network, in particular:
 - The structure of the network
 - The data available to describe the relationships
- Some network analyses:
 - Shortest path analyses
 - Topological sorting for visualization
- From a quantitative modeling standpoint, it also depends on the network, in particular:
 - The structure of the network
 - The data available to describe the relationships

Perkins et al describe how qAOP can utilize networks of increasing specificity

Bayesian networks are coming under increasing use in ecotoxicology.

IEAM special issue, Burgoon et al, Landis et al

Petri nets (Edhlund et al)